Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Inhibition of SLC26A4 regulated by electroacupuncture suppresses the progression of myocardial ischemia-reperfusion injury

    FEI KONG1, QIYUAN TIAN2, BINGLIN KUANG3, LILI SHANG4, XIAOXIAO ZHANG5, DONGYANG LI5, YING KONG6,*

    BIOCELL, Vol.48, No.4, pp. 665-675, 2024, DOI:10.32604/biocell.2024.046342

    Abstract Introduction: Myocardial ischemia-reperfusion (IR) injury has received widespread attention due to its damaging effects. Electroacupuncture (EA) pretreatment has preventive effects on myocardial IR injury. SLC26A4 is a Na+ independent anion reverse transporter and has not been reported in myocardial IR injury. Objectives: To find potential genes that may be regulated by EA and explore the role of this gene in myocardial IR injury. Methods: RNA sequencing and bioinformatics analysis were performed to obtain the differentially expressed genes in the myocardial tissue of IR rats with EA pretreatment. Myocardial infarction size was detected by TTC staining. Serum CK, creatinine kinase-myocardial band,… More > Graphic Abstract

    Inhibition of SLC26A4 regulated by electroacupuncture suppresses the progression of myocardial ischemia-reperfusion injury

  • Open Access

    ARTICLE

    Biochanin A, as the Lrg1/TGF-β/Smad2 pathway blockade, attenuates blood-brain barrier damage after cerebral ischemia-reperfusion by modulating leukocyte migration patterns

    LONGSHENG FU1, JINFANG HU1, FENG SHAO2, YAOQI WU1, WEI BAI3, MINGJIN JIANG3, HAO CHEN4, LIHUA CHEN2, YANNI LV1,*

    BIOCELL, Vol.47, No.8, pp. 1869-1883, 2023, DOI:10.32604/biocell.2023.028602

    Abstract Background: Biochanin A is an excellent dietary isoflavone that has the concomitant function of both medicine and foodstuff. The attenuation function of biochanin A on blood-brain barrier (BBB) damage induced by cerebral ischemia-reperfusion remains unclear. Methods: C57BL/6 mice were subjected to 1 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. The infarct volume of the brain was stained by TTC, while leakage of the brain was quantitatively stained by Evans blue, and the neurologic deficit score was measured. Microglial-induced morphologic changes were observed via immunofluorescence staining, and rolling and adhering leukocytes in venules were observed via two-photon… More >

  • Open Access

    ARTICLE

    Exploring the attenuation mechanisms of Dalbergia odorifera leaves extract on cerebral ischemia-reperfusion based on weighted gene co-expression network analysis

    JINFANG HU1,#, JIANGEN AO2,#, LONGSHENG FU1,#, YAOQI WU1, FENG SHAO3, TIANTIAN XU1, MINGJIN JIANG4, SHAOFENG XIONG1, YANNI LV1,*

    BIOCELL, Vol.47, No.7, pp. 1611-1622, 2023, DOI:10.32604/biocell.2023.028684

    Abstract Background: The attenuation function of Dalbergia odorifera leaves on cerebral ischemia-reperfusion (I/R) is little known. The candidate targets for the Chinese herb were extracted from brain tissues through the high-affinity chromatography. The molecular mechanism of D. odorifera leaves on cerebral I/R was investigated. Methods: Serial affinity chromatography based on D. odorifera leaves extract (DLE) affinity matrices were applied to find specific binding proteins in the brain tissues implemented on C57BL/6 mice by intraluminal middle cerebral artery occlusion for 1 h and reperfusion for 24 h. Specific binding proteins were subjected to mass-spectrometry to search for the differentially expressed proteins between… More >

  • Open Access

    ARTICLE

    MELLT3 protects against cerebral ischemia-reperfusion (I/R) injury through up-regulation of m6A modification

    JING JIN1,#, XINGHUA WANG2,#, XIAOXIAO ZHENG3, JIAHUA LAN3, LI ZHENG3, YING CAI3, HUI CHEN4, HONGWEI WANG5,*, LIFANG ZHENG6,*

    BIOCELL, Vol.47, No.3, pp. 619-626, 2023, DOI:10.32604/biocell.2023.026016

    Abstract Ischemic cerebrovascular disease is a leading cause of death globally and is often exacerbated by cerebral ischemic/reperfusion injury (CIRI). The exact mechanisms underlying I/R injury are unclear. In this study, we aimed to determine the role of m6A-modified methylase complex methyltransferase-like 3 (METTL3) in cerebral ischemia-reperfusion (I/R) injury. We found that m6A and METTL3 levels increased in OGD/RX-induced mouse astrocytes-cerebellar (MA-C) and the brain of middle cerebral artery occlusion (MCAO) model mice. METTL3 siRNA treatment reduced OGD-RX-induced MAC cell viability and proliferation, which increased with METTL3 over-expression. Flow cytometry analysis showed that silencing METTL3 significantly enhanced OGD/RX-induced MAC apoptosis, which… More >

  • Open Access

    ARTICLE

    Puerarin inactivates NLRP3-mediated pyroptotic cell death to alleviate cerebral ischemia/reperfusion (I/R) injury through modulating the LncRNA DUXAP8/miR-223-3p axis

    ZHENGUO SHI#,*, QIAOYUN WU#, HAIYAN SHI, SONGTIE YING, LIANG TAO

    BIOCELL, Vol.46, No.4, pp. 979-988, 2022, DOI:10.32604/biocell.2022.015345

    Abstract NLRP3 inflammasome-mediated cell pyroptosis aggravates the development of cerebral ischemia/reperfusion (I/R) injury, and the aim of this study is to investigate the potential utilization of the Chinese medicine, Puerarin, in treating this disease. Through conducting in vitro and in vivo experiments, the present study illustrated that Puerarin regulated LncRNA double homeobox A pseudogene 8 (DUXAP8)/miR-223-3p axis to inactivate NLRP3-mediated pyroptotic cell death, resulting in the attenuation of I/R injury. Specifically, the cerebral I/R injury in rat models and hypoxia/reoxygenation (H/R) in primary hippocampus neuron (PHN) cells were inducted, which were subsequently exposed to Puerarin treatment. As expected, we validated that… More >

  • Open Access

    ARTICLE

    Hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen–glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy

    JIANRONG YANG1,#, WAN CHEN2,#, XING ZHOU3,#, YAOXUAN LI4,#, ZHIHUANG NONG5, LIYUAN ZHOU4, XUAN WEI4, XIAORONG PAN6, CHUNXIA CHEN7, WENSHENG LU3

    BIOCELL, Vol.46, No.1, pp. 137-148, 2022, DOI:10.32604/biocell.2022.016807

    Abstract In this study, we investigated the protective effect of hyperbaric oxygen (HBO) on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism. PC12 and H9C2 cell oxygen-glucose deprivation/reperfusion model were established. Cells were divided into a control group, model group, hyperbaric air (HBA) group and HBO group. The cell viability was detected by the CCK8 assay. Hoechst 33342 and PI staining assays and mitochondrial membrane potential (MMP) assays were used to detect cell apoptosis. The ultrastructure of cells, including autophagosomes, lysosomes, and apoptosis, were examined using a transmission electron microscope. The expression of autophagy-related proteins was… More >

  • Open Access

    ARTICLE

    Benefit of prophylactic bronchodilator with β2 adrenergic agonist in ischemia-reperfusion-induced lung injury

    CHEN-LIANG TSAI1, YU-HUEI LIN2, CHIH-YING CHANGCHIEN3, CHIH-FENG CHIAN1,#,*, CHI-HUEI CHIANG4,#,*

    BIOCELL, Vol.45, No.5, pp. 1201-1211, 2021, DOI:10.32604/biocell.2021.014279

    Abstract Primary lung graft dysfunction could significantly attribute to ischemia-reperfusion lung injury (IRLI) during transplantation surgery. β2-adrenergic agonists were one of the bronchodilators that had been well-established in the management of asthma and chronic obstructive pulmonary disease (COPD) with anti-inflammatory potency. By applying the model of isolated rat lung, we evaluated the efficacy of short-acting β2-agonist inhalation to ameliorate ischemia-reperfusion damage. The experiment protocol was 180 min of global ischemia and then reperfusion for 60 min. In the β2-agonist inhalation group, aerosolized albuterol was administrated prior ischemia procedure. Increased weight ratios of wet to dry lung and microvascular permeability were characterized… More >

  • Open Access

    ARTICLE

    APEX1 protects against oxidative damage-induced cardiomyocyte apoptosis

    ZHAOHUI HU1,2, XIANGJUN DING3, YUYAO JI2, XIAOHONG LIU4,*, ZHIWEN DING2,*

    BIOCELL, Vol.45, No.3, pp. 745-749, 2021, DOI:10.32604/biocell.2021.013293

    Abstract Apurine/pyrimidine-free endonuclease 1 (APEX1) is a multifunctional enzyme that contributes to oxidizationmediated DNA-cleaved base excision repair and redox activation of transcription factors. However, the role of APEX1 during cardiomyocyte oxidative stress injury is not completely understood. In the present study, whether APEX1 protects oxidative damage-induced cardiomyocytes was investigated. mRNA and protein expression levels of APEX1 were downregulated in the mouse model of cardiac ischemia-reperfusion injury. Furthermore, the expression of APEX1 in hydrogen peroxide (H2O2)-treated neonatal mice cardiomyocytes was also decreased. APEX1 knockdown aggravated H2O2-treated cardiomyocyte apoptosis indexes. By contrast, APEX1 overexpression reversed H2O2-induced oxidative damage, as demonstrated by decreased caspase… More >

  • Open Access

    ARTICLE

    miR-21-3p alleviates neuronal apoptosis during cerebral ischemiareperfusion injury by targeting SMAD2

    FEI TIAN*, GANG LIU, LINLIN FAN, ZHONGYUN CHEN, YAN LIANG,

    BIOCELL, Vol.45, No.1, pp. 49-56, 2021, DOI:10.32604/biocell.2021.013794

    Abstract Cerebral ischemia is due to the formation of blood clots or embolisms in the brain arteries, which leads to local brain tissue necrosis and neural cell apoptosis. Recent studies have shown that microRNA (miRNA) plays an important regulatory role in the pathological process of ischemic injury. The aim of this study is to investigate the role and the mechanism of miR-21-3p and drosophila mothers against decapentaplegic 2 (SMAD2) in cerebral ischemic reperfusion injured (CIRI) neural cells. The CIRI model was established by oxygen-glucose deprivation and recovery process for N2a cells. The cell viability and the apoptotic was evaluated by MTT… More >

  • Open Access

    ARTICLE

    Exosomes derived from circBCRC-3-knockdown mesenchymal stem cells promoted macrophage polarization

    QI SONG1, JUN ZHANG1, QIANG ZHANG1, JING LIU1, KE LV1, JIALU YAO1,2,3,*, YAFENG ZHOU2,3,*

    BIOCELL, Vol.44, No.4, pp. 623-629, 2020, DOI:10.32604/biocell.2020.012645

    Abstract Macrophages play an essential role in the myocardial ischemia-reperfusion injury (MIRI), and the macrophage shifting from M1 to M2 phenotypes might be a potential strategy for the treatment of MIRI. It has been reported that miR-182 plays an important role in MSC-Exo-associated macrophage polarization. As circBCRC-3 is a newly discovered circle RNA that worked as a sponge of miR-182, this research aimed to find if circBCRC-3 plays a role in MSC-Exo-associated macrophage polarization. Firstly, circBCRC-3 was identified by divergent primers in mesenchymal stem cells (MSCs). Secondly, the exosome of MSCs was isolated and identified by transmission electron microscopy (TEM), nanoparticle-tracking… More >

Displaying 1-10 on page 1 of 15. Per Page