Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (271)
  • Open Access

    PROCEEDINGS

    Mechanism of Crack Resistance and Strength-Ductility in Additive Manufacturing of High Entropy Alloys

    Pengda Niu1, Ruidi Li1,*, Tiechui Yuan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012243

    Abstract In terms of grain refinement and component shape complexity, laser additive manufacturing (AM) is unmatched. This is exemplified by laser powder bed fusion (LPBF), whose rapid solidification and non-equilibrium metallurgy have expanded the understanding of ultra-fine grains and sub-stable organization among academics. At present, the reliability of LPBF components is being questioned by the industry due to the rapid heating and cooling cycles in AM processing, coupled with the extreme non-equilibrium heat-fluid-mass process, which renders LPBF printing vulnerable to metallurgical defects like microcracks and porosity. A significant impediment to the development of LPBF lies in… More >

  • Open Access

    PROCEEDINGS

    Development of a High-Temperature Resistance SLS Sand Mold Process for Titanium Alloy Casting

    Shouyin Zhang1,*, Zhifeng Xu1, Qiangwei Xiao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012141

    Abstract 3D printing sand mold has been widely used in casting production. However, there exist some problems hindering its application for titanium alloy casting, such as the large amount of gas evolution, cannot withstand high temperature impact, easy to react with titanium alloy melt, etc. This work develops a high-temperature resistance SLS (selective laser sintering) sand mold process by introducing inorganic binder in two different ways, i.e., bi-binder SLS process and SLS infiltration process. After sintering at 1100 ℃, SLS sand mold or core possesses high tensile strength and can be used for titanium alloy casting. More >

  • Open Access

    PROCEEDINGS

    Dynamic Response of Sandwich Panel with Re-Entrant Honeycomb Core Reinforced by Catenary Under Air Blast

    Zhen Zou1,2, Fengxiang Xu1,2,*, Yifan Zhu1,2, Xiaoqiang Niu1,2, Xiao Geng1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011093

    Abstract Honeycomb cored sandwich structures have been attracted extensive attentions attributed to outstanding explosion and impact protection capability. Herein, in order to improve the anti-blast performance of re-entrant honeycombs (RH) cored sandwich panel, the conventional RH is reinforced by introducing catenary in the form of connecting both ends of horizontal cell walls and catenary. The results show that the deformation mode of the reinforced RHs (RRH) becomes more stable and regular compared to RHs, and the energy absorption of classic RHs can be enhanced because the reinforced structures and the improved auxetic deformation are employed simultaneously.… More >

  • Open Access

    ARTICLE

    Termite Resistance of Heat-Treated Eucalyptus OSB Bonded with Eco-Friendly Castor Oil Adhesive

    Estefani S. Sugahara1,2,3,*, André M. A. Dias1,3, Fernanda D. Maffioletti5, Juarez B. Paes5, André L. Christoforo4, Edson C. Botelho2, Alfredo M. P. G. Dias1,3, Cristiane I. Campos2

    Journal of Renewable Materials, Vol.12, No.11, pp. 1911-1925, 2024, DOI:10.32604/jrm.2024.056198 - 22 November 2024

    Abstract Over the last decade, the oriented strand board (OSB) market presented meaningful growth. However, as a wood-based product, because of its anatomical structure and chemical composition, OSB can be damaged by biodeterioration agents. Given that, the biodeterioration of OSB panels must be investigated to improve its durability. In this way, this work analyses the biological resistance against termites (Cryptotermes brevis and Nasutitermes corniger) of heat-treated OSB panels made with Eucalyptus wood glued with vegetable-based polyurethane-an eco-friendly and sustainable adhesive derived from castor oil. Various panels were produced with different layers compositions (face:core:face of 25:50:25 and 30:40:30) in wood… More > Graphic Abstract

    Termite Resistance of Heat-Treated Eucalyptus OSB Bonded with Eco-Friendly Castor Oil Adhesive

  • Open Access

    REVIEW

    First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review

    Muhammad Abdullah Khan1, Muhammad Usman2, Yuhong Zhao1,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1905-1952, 2024, DOI:10.32604/cmc.2024.054691 - 18 November 2024

    Abstract This comprehensive review examines the structural, mechanical, electronic, and thermodynamic properties of Mg-Li-Al alloys, focusing on their corrosion resistance and mechanical performance enhancement. Utilizing first-principles calculations based on Density Functional Theory (DFT) and the quasi-harmonic approximation (QHA), the combined properties of the Mg-Li-Al phase are explored, revealing superior incompressibility, shear resistance, and stiffness compared to individual elements. The review highlights the brittleness of the alloy, supported by B/G ratios, Cauchy pressures, and Poisson’s ratios. Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics, while Mulliken population analysis emphasizes significant electron transfer within the… More >

  • Open Access

    ARTICLE

    CES1 is associated with cisplatin resistance and poor prognosis of head and neck squamous cell carcinoma

    CHUAN JIANG1,2, CHUNLEI LIU1,3, XI YAO1,3, JINGYA SU1,2, WEI LU1,3, ZHENGBO WEI3,*, YING XIE1,2,*

    Oncology Research, Vol.32, No.12, pp. 1935-1948, 2024, DOI:10.32604/or.2024.052244 - 13 November 2024

    Abstract Background: Head and neck squamous cell carcinoma (HNSCC) is a prevalent form of cancer globally, with chemoresistance posing a major challenge in treatment outcomes. The efficacy of the commonly used chemotherapeutic agent, cisplatin, is diminished in patients with poor prognoses. Methods: Various bioinformatics databases were utilized to examine Carboxylesterase 1 (CES1) gene expression, clinicopathologic features, patient survival analysis, and gene function. An organoid model of HNSCC was established, along with the induction of drug-resistant HNSCC in the organoid model. CES1 expression was assessed using qRT-PCR and Western Blot, and differential markers were identified through transcriptome… More >

  • Open Access

    ARTICLE

    The superiority of PMFs on reversing drug resistance of colon cancer and the effect on aerobic glycolysis-ROS-autophagy signaling axis

    YUQIN YIN1,2,#, YU WU1,#, HONGLIANG HUANG1,2, YINGYING DUAN1,2, ZHONGWEN YUAN1,2, LIHUI CAO1,2, JINJIN YING1,2, YONGHENG ZHOU3,*, SENLING FENG1,2,*

    Oncology Research, Vol.32, No.12, pp. 1891-1902, 2024, DOI:10.32604/or.2024.048778 - 13 November 2024

    Abstract Background: Polymethoxylated flavones (PMFs) are compounds present in citrus peels and other Rutaceae plants, which exhibit diverse biological activities, including robust antitumor and antioxidant effects. However, the mechanism of PMFs in reversing drug resistance to colon cancer remains unknown. In the present study, we aimed to investigate the potential connection between the aerobic glycolysis-ROS-autophagy signaling axis and the reversal of PTX resistance in colon cancer by PMFs. Methods: MTT Cell viability assay and colony formation assay were used to investigate the effect of PMFs combined with PTX in reversing HCT8/T cell resistance ex vivo; the mRNA… More > Graphic Abstract

    The superiority of PMFs on reversing drug resistance of colon cancer and the effect on aerobic glycolysis-ROS-autophagy signaling axis

  • Open Access

    ARTICLE

    LncRNA AFAP1-AS1 exhibits oncogenic characteristics and promotes gemcitabine-resistance of cervical cancer cells through miR-7-5p/EGFR axis

    CHAOQUN WANG1, TING ZHANG2, CHAOHE ZHANG3,*

    Oncology Research, Vol.32, No.12, pp. 1867-1879, 2024, DOI:10.32604/or.2024.044547 - 13 November 2024

    Abstract Background: Drug resistance is the main factor contributing to cancer recurrence and poor prognosis. Exploration of drug resistance-related mechanisms and effective therapeutic targets are the aim of molecular targeted therapy. In our study, the role of long non-coding RNA (lncRNA) AFAP1-AS1 in gemcitabine resistance and related mechanisms were explored in cervical cancer cells. Methods: Gemcitabine-resistant cervical cancer cell lines HT-3-Gem and SW756-Gem were constructed using the gemcitabine concentration gradient method. The overall survival rates and recurrence-free survival rates were evaluated by Kaplan-Meier analysis. The interaction was verified through a Dual-luciferase reporter gene assay and a… More > Graphic Abstract

    LncRNA AFAP1-AS1 exhibits oncogenic characteristics and promotes gemcitabine-resistance of cervical cancer cells through miR-7-5p/EGFR axis

  • Open Access

    PROCEEDINGS

    Challenges and Advances in Spot Joining Processes of Automotive Bodies

    Yongbing Li1,*, Yunwu Ma1, Yujun Xia1, Ming Lou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012602

    Abstract The implementation of lightweight materials and structures in automotive body manufacturing is a strategic approach to improve fuel efficiency of energy-efficient vehicles and driving range of new energy vehicles. However, high specific strength low-ductility light metals (like 7xxx aluminum, magnesium and cast aluminum), ultra-high strength steels, high-stiffness profile structures and their mixed use poses a big challenge to existing commercial spot joining processes, such as resistance spot welding and self-piercing riveting. In this talk, the challenges which new lightweight materials and structures pose to spot joining process will be presented, the bottleneck of the existing More >

  • Open Access

    PROCEEDINGS

    Thermal Insulating and Fire Retardant Si3N4 Nanowires Membranes Resistant to High-Temperatures up to 1300 °C

    Yeye Liu1, Leilei Zhang1,*, Ruonan Zhang1, Siqi Shao1, Lina Sun1, Xinyi Wan1, Tiantian Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012576

    Abstract Superior thermal insulating and fire-retardant ceramic membranes are urgently demanded in the aerospace, construction and chemical engineering industries. However, the generic characteristics of ceramic membranes, such as brittleness, structural collapse and crystallization-induced pulverization behavior, present a great plague to their practical applications. Herein, we report a highly flexible, mechanically stable, fire retardant and high-temperature-resistant ceramic membrane based on the interlocked Si3N4 nanowires formed by the precursor pyrolysis method. The Si3N4 nanowires membrane (SNM) has excellent high temperature resistance under alcohol lamp and butane spray lance. The thermal insulation with a thermal conductivity as low as 0.056… More >

Displaying 1-10 on page 1 of 271. Per Page