Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    A Low-Cost, Real-Time Rooftop IoT-Based Photovoltaic (PV) System for Energy Management and Home Automation

    Muhammad Uzair*, Salah Al-Kafrawi, Karam Al-Janadi, Ibrahim Al-Bulushi

    Energy Engineering, Vol.119, No.1, pp. 83-101, 2022, DOI:10.32604/EE.2022.016411

    Abstract This work discusses the importance of monitoring and energy management of green energy resources in order to minimize the negative impacts of electricity generation by regular power plants. The paper introduces a highly efficient, low-cost rooftop photovoltaics (PV) solar panel system which can provide monitoring, controlling and automation. The proposed system is based on Internet of Things (IoT) and can be used to control different utilities in any premises automatically or set by the user-defined priority list, as compared to the existing IoT-based PV systems which can only perform monitoring and maintenance of the PV panels or only certain parameters,… More >

  • Open Access

    ARTICLE

    Secure Data Sharing with Confidentiality, Integrity and Access Control in Cloud Environment

    V. Rajkumar1,*, M. Prakash2, V. Vennila3

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 779-793, 2022, DOI:10.32604/csse.2022.019622

    Abstract Cloud storage is an incipient technology in today’s world. Lack of security in cloud environment is one of the primary challenges faced these days. This scenario poses new security issues and it forms the crux of the current work. The current study proposes Secure Interactional Proof System (SIPS) to address this challenge. This methodology has a few key essential components listed herewith to strengthen the security such as authentication, confidentiality, access control, integrity and the group of components such as AVK Scheme (Access List, Verifier and Key Generator). It is challenging for every user to prove their identity to the… More >

  • Open Access

    A Novel PoW Scheme Implemented by Probabilistic Signature for Blockchain

    Bo Mi1, Yuan Weng1, Darong Huang1,*, Yang Liu1, Yuqing Gan2

    Computer Systems Science and Engineering, Vol.39, No.2, pp. 265-274, 2021, DOI:10.32604/csse.2021.017507

    Abstract PoW (Proof of Work) plays a significant role in most blockchain systems to grant an accounting right over decentralized participants and ensure tamper resistance. Though hash functions are generally exploited for PoW due to their merits on summering, anti-collision, and irreversibility, they cannot certify that the bookkeeper is exactly the worker. Thereafter, such insistence may lead to abuse or even embezzlement of computing power for the benefit of malicious miners. To preserve the functionality of PoW but also bind the miners’ signing keys with their works, we build a post-quantum PoW scheme by changing the approximate closest vector norm for… More >

  • Open Access

    ARTICLE

    Fabrication and Simulation of TE Modules for a Feasibility Study on Harvesting Solar Heat Energy from Roof Tiles

    Sakorn Inthachai1, Supasit Paengson2, Jindaporn Jamradloedluk1,*, Tosawat Seetawan2,*

    Journal of Renewable Materials, Vol.9, No.10, pp. 1685-1697, 2021, DOI:10.32604/jrm.2021.015553

    Abstract A novel roof tile thermoelectric generator (RT-TEG) was used to harvest electrical energy from a solar heat source. The RT-TEG was fabricated and simulated by flat and curved thermoelectric modules consisting of p-n junctions of p-Sb2Te3 and n-Bi2Te3, with an Al2O3 substrate at the top and bottom for heat absorption and heat rejection. The RT-TEG was installed in a roof tile to act as a generator. The electrical voltage and power values of the curved thermoelectric modules were higher than those of the flat thermoelectric module by 0.44 V and 80 mW, at a temperature difference (ΔT) of 100 K.… More > Graphic Abstract

    Fabrication and Simulation of TE Modules for a Feasibility Study on Harvesting Solar Heat Energy from Roof Tiles

  • Open Access

    ARTICLE

    Optimum Calculation of Coal Pillars in Inclined Weathered Oxidation Zone

    Yingbo Zhang1, Shi Chen1,2,*

    Energy Engineering, Vol.118, No.3, pp. 707-714, 2021, DOI:10.32604/EE.2021.013888

    Abstract In the mining process of coal mine, waterproof coal pillars should be set between the weathered oxidation zone and the first mining face. In order to determine the reasonable upper limit of the first mining face of Hongyi Coal Mine, the waterproof coal pillar needs to be wide enough to resist the lateral hydrostatic pressure of the oxidation zone, and to ensure that the top plate aquifer does not run through the water guide crack zone, while also liberating as much stagnant coal as possible. In this paper, the first coal mine face’s waterproof coal pillar was calculated using conventional… More >

  • Open Access

    ARTICLE

    Enhanced Thermal Performance of Roofing Materials by Integrating Phase Change Materials to Reduce Energy Consumption in Buildings

    Chanita Mano, Atthakorn Thongtha*

    Journal of Renewable Materials, Vol.9, No.3, pp. 495-506, 2021, DOI:10.32604/jrm.2021.013201

    Abstract This work focused on characterizing and improving the thermal behavior of metal sheet roofing. To decrease the heat transfer from the roof into a building, we investigated the efficiency of four types of phase change materials, with different melting points: PCM І, PCM II, PCM III and PCM IV, when used in conjunction with a sheet metal roof. The exterior metal roofing surface temperature was held constant at 50°C, 60°C, 70°C and 80°C, using a thermal source (halogen lights) for 360 min to investigate and compare the thermal performance of the metal sheet roofing with and without phase change materials… More >

  • Open Access

    ARTICLE

    A Systematic Molecular Dynamics Investigation on the Graphene Polymer Nanocomposites for Bulletproofing

    Hamidreza Noori1, Bohayra Mortazavi2, 3, Alessandro Di Pierro4, Emad Jomehzadeh5, Xiaoying Zhuang2, 3, Zi Goangseup6, Kim Sang-Hyun7, Timon Rabczuk8, 9, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2009-2032, 2020, DOI:10.32604/cmc.2020.011256

    Abstract In modern physics and fabrication technology, simulation of projectile and target collision is vital to improve design in some critical applications, like; bulletproofing and medical applications. Graphene, the most prominent member of two dimensional materials presents ultrahigh tensile strength and stiffness. Moreover, polydimethylsiloxane (PDMS) is one of the most important elastomeric materials with a high extensive application area, ranging from medical, fabric, and interface material. In this work we considered graphene/PDMS structures to explore the bullet resistance of resulting nanocomposites. To this aim, extensive molecular dynamic simulations were carried out to identify the penetration of bullet through the graphene and… More >

  • Open Access

    ARTICLE

    Stability Control of Gob-Side Entry Retaining in Fully Mechanized Caving Face Based on a Compatible Deformation Model

    Xinshuai Shi1, Hongwen Jing1, *, Jianguo Ning2, Zhenlong Zhao1, Junfu Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 315-343, 2020, DOI:10.32604/cmes.2020.07955

    Abstract The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China. The rotation and subsidence of the lateral cantilever play a critical role in a coal mine, possibly leading to instability in a coal seam wall or a gob-side wall due to its excessive rotation subsidence. Hence, the presplitting blasting measures in the roof was implemented to cut down the lower main roof and convert it to caved immediate roof strata, which can significantly reduce the rotation space for the lateral cantilever and effectively control its rotation. Firstly, the… More >

  • Open Access

    ARTICLE

    A Study on the Reduction of the Aerodynamic Drag and Noise Generated By the Roof Air Conditioner of High-Speed Trains

    Jiali Liu1, Mengge Yu2, *, Dawei Chen1, Zhigang Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 21-30, 2020, DOI:10.32604/fdmp.2020.07658

    Abstract In order to investigate how the aerodynamic drag and noise produced by the roof air conditioner of a high-speed train can be reduced, the related unsteady flow in the near-field was computed using the method of large eddy simulation. In this way, the aerodynamic source for noise generation has initially been determined. Then, the far-field aerodynamic noise has been computed in the framework of the Lighthill’s acoustics analogy theory. The propulsion height and flow-guide angle of the roof air conditioner were set as the design variables. According to the computational results, a lower propulsion height or flow-guide angle is beneficial… More >

  • Open Access

    ARTICLE

    Dynamic Pressures on Tunnel Roofs due to Vehicle Passages

    James D. Barnes1, Ethan R. Brush1, Mark S. Newmark1, Eric E. Ungar1, *

    Sound & Vibration, Vol.52, No.4, pp. 6-8, 2018, DOI:10.32604/sv.2018.03737

    Abstract Pressure and proximity measurements made in a tunnel indicate that a typical vehicle passage produced on the tunnel roof an initial pressure increase of small magnitude, followed by a sharp and more substantial drop in pressure below atmospheric. The magnitude of the pressure drop was found to increase with smaller clearances between the vehicle top and the tunnel roof, consistent with the Bernoulli relation and the vehicle speed. The dynamic pressures potentially may have significant effects on the vibration and noise environments on the lower floors of “air rights construction” buildings that span highways. More >

Displaying 21-30 on page 3 of 34. Per Page