Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (319)
  • Open Access

    ARTICLE

    MARCS: A Mobile Crowdsensing Framework Based on Data Shapley Value Enabled Multi-Agent Deep Reinforcement Learning

    Yiqin Wang1, Yufeng Wang1,*, Jianhua Ma2, Qun Jin3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4431-4449, 2025, DOI:10.32604/cmc.2025.059880 - 06 March 2025

    Abstract Opportunistic mobile crowdsensing (MCS) non-intrusively exploits human mobility trajectories, and the participants’ smart devices as sensors have become promising paradigms for various urban data acquisition tasks. However, in practice, opportunistic MCS has several challenges from both the perspectives of MCS participants and the data platform. On the one hand, participants face uncertainties in conducting MCS tasks, including their mobility and implicit interactions among participants, and participants’ economic returns given by the MCS data platform are determined by not only their own actions but also other participants’ strategic actions. On the other hand, the platform can… More >

  • Open Access

    ARTICLE

    An AI-Enabled Framework for Transparency and Interpretability in Cardiovascular Disease Risk Prediction

    Isha Kiran1, Shahzad Ali2,3, Sajawal ur Rehman Khan4,5, Musaed Alhussein6, Sheraz Aslam7,8,*, Khursheed Aurangzeb6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5057-5078, 2025, DOI:10.32604/cmc.2025.058724 - 06 March 2025

    Abstract Cardiovascular disease (CVD) remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis, driven by risk factors such as hypertension, high cholesterol, and irregular pulse rates. Traditional diagnostic methods often struggle with the nuanced interplay of these risk factors, making early detection difficult. In this research, we propose a novel artificial intelligence-enabled (AI-enabled) framework for CVD risk prediction that integrates machine learning (ML) with eXplainable AI (XAI) to provide both high-accuracy predictions and transparent, interpretable insights. Compared to existing studies that typically focus on either optimizing ML… More >

  • Open Access

    ARTICLE

    Industrial Untapped Rotational Kinetic Energy Assessment for Sustainable Energy Recycling

    See Wei Jing, Md Tanjil Sarker*, Gobbi Ramasamy*, Siva Priya Thiagarajah, Fazlul Aman

    Energy Engineering, Vol.122, No.3, pp. 905-927, 2025, DOI:10.32604/ee.2025.058916 - 07 March 2025

    Abstract Electrical energy can be harvested from the rotational kinetic energy of moving bodies, consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction, similar to wind energy applications. In industries, rotational bodies are commonly present in operations, yet this kinetic energy remains untapped. This research explores the energy generation characteristics of two rotational body types, disk-shaped and cylinder-shaped under specific experimental setups. The hardware setup included a direct current (DC) motor driver, power supply, DC generator, mechanical support, and load resistance, while the software setup involved automation testing tools and… More >

  • Open Access

    ARTICLE

    An Improved Local RBF Collocation Method for 3D Excavation Deformation Based on Direct Method and Mapping Technique

    Cheng Deng1,2, Hui Zheng2,*, Liangyong Gong1, Rongping Zhang1, Mengqi Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 2147-2172, 2025, DOI:10.32604/cmes.2025.059750 - 27 January 2025

    Abstract Since the plasticity of soil and the irregular shape of the excavation, the efficiency and stability of the traditional local radial basis function (RBF) collocation method (LRBFCM) are inadequate for analyzing three-dimensional (3D) deformation of deep excavation. In this work, the technique known as the direct method, where the local influence nodes are collocated on a straight line, is introduced to optimize the LRBFCM. The direct method can improve the accuracy of the partial derivative, reduce the size effect caused by the large length-width ratio, and weaken the influence of the shape parameters on the More >

  • Open Access

    REVIEW

    Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review

    Ahmed Manguri1,2,3,*, Hogr Hassan3, Najmadeen Saeed3,4, Robert Jankowski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 933-971, 2025, DOI:10.32604/cmes.2025.059249 - 27 January 2025

    Abstract The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications. Structural optimization approaches seek to determine the optimal design, by considering material performance, cost, and structural safety. The design approaches aim to reduce the built environment’s energy use and carbon emissions. This comprehensive review examines optimization techniques, including size, shape, topology, and multi-objective approaches, by integrating these methodologies. The trends and advancements that contribute to developing more efficient, cost-effective, and reliable structural designs were identified. The review also discusses emerging technologies, such as machine learning applications with More >

  • Open Access

    ARTICLE

    Experimental Study and a Modified Model for Temperature-Recovery Stress of Shape Memory Alloy Wire under Different Temperatures

    Zhi-Xiang Wei1, Wen-Wei Wang2,*, Yan-Jie Xue3, Wu-Tong Zhang2, Qiu-Di Huang2

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 347-364, 2025, DOI:10.32604/sdhm.2024.054559 - 15 January 2025

    Abstract To investigate the performance of utilizing the shape memory effect of SMA (Shape Memory Alloy) wire to generate recovery stress, this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions. The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests. The SMA wire was strained from 2% to 8% initially, and two distinct heating approaches were employed: one using a large current interval for rapid heating and one using… More >

  • Open Access

    ARTICLE

    Reverse Analysis Method and Process for Improving Malware Detection Based on XAI Model

    Ki-Pyoung Ma1, Dong-Ju Ryu2, Sang-Joon Lee3,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4485-4502, 2024, DOI:10.32604/cmc.2024.059116 - 19 December 2024

    Abstract With the advancements in artificial intelligence (AI) technology, attackers are increasingly using sophisticated techniques, including ChatGPT. Endpoint Detection & Response (EDR) is a system that detects and responds to strange activities or security threats occurring on computers or endpoint devices within an organization. Unlike traditional antivirus software, EDR is more about responding to a threat after it has already occurred than blocking it. This study aims to overcome challenges in security control, such as increased log size, emerging security threats, and technical demands faced by control staff. Previous studies have focused on AI detection models,… More >

  • Open Access

    REVIEW

    Navigating IoT Security: Insights into Architecture, Key Security Features, Attacks, Current Challenges and AI-Driven Solutions Shaping the Future of Connectivity

    Ali Hassan1, N. Nizam-Uddin2, Asim Quddus3, Syed Rizwan Hassan4, Ateeq Ur Rehman5,*, Salil Bharany6

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3499-3559, 2024, DOI:10.32604/cmc.2024.057877 - 19 December 2024

    Abstract Enhancing the interconnection of devices and systems, the Internet of Things (IoT) is a paradigm-shifting technology. IoT security concerns are still a substantial concern despite its extraordinary advantages. This paper offers an extensive review of IoT security, emphasizing the technology’s architecture, important security elements, and common attacks. It highlights how important artificial intelligence (AI) is to bolstering IoT security, especially when it comes to addressing risks at different IoT architecture layers. We systematically examined current mitigation strategies and their effectiveness, highlighting contemporary challenges with practical solutions and case studies from a range of industries, such More >

  • Open Access

    PROCEEDINGS

    Additively Manufactured Dual-Faced Structured Fabric for Shape-Adaptive Protection

    Yuanyuan Tian1,2, Kun Zhou1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013372

    Abstract Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, we leverage the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of three-dimensional re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J/kg and 5900 N·m/kg, respectively, together with an excellent recovery ratio of ~80%, thereby overcoming the strength–recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range More >

  • Open Access

    PROCEEDINGS

    Novel Shape Morphing Strategy of Plastic Films via Peeling

    Dong Li1, Feilong Zhang2, Shutao Wang3,*, Huajian Gao1,4,*, Xiaodong Chen2,5,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011040

    Abstract Three-dimensional (3D) architectures and related devices have been widely concerned in recent years due to their unique geometrical advantages and superior performance. Existing approaches to transforming planar thin films into 3D architectures require the use of active materials [1,2] or need substrates to maintain 3D shapes [3,4]. Here, we propose a peeling-induced shape morphing strategy to construct freestanding 3D architectures from 2D plastic films including inert polymers, such as polyethylene terephthalate (PET) and polyimide (PI), which are significant substrate materials for flexible electronics. The plastic strains generated by peeling the film from an adhered plane… More >

Displaying 1-10 on page 1 of 319. Per Page