Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (286)
  • Open Access

    ARTICLE

    An Improved JSO and Its Application in Spreader Optimization of Large Span Corridor Bridge

    Shude Fu1,2, Xinye Wu1,2,*, Wenjie Wang3, Yixin Hu1,3,*, Zhengke Li1, Feng Jiang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2357-2382, 2024, DOI:10.32604/cmes.2023.031118

    Abstract In this paper, given the shortcomings of jellyfish search algorithm with low search ability in the early stage and easy to fall into local optimal solution, this paper introduces adaptive weight function and elite strategy, improving the global search scope in the early stage and the ability to refine the local development in the later stage. In the numerical study, the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted, and the corresponding penalty method is used for constraint treatment. The test… More > Graphic Abstract

    An Improved JSO and Its Application in Spreader Optimization of Large Span Corridor Bridge

  • Open Access

    ARTICLE

    An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate

    Yingui Qiu1, Shuai Huang1, Danial Jahed Armaghani2, Biswajeet Pradhan3, Annan Zhou4, Jian Zhou1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2873-2897, 2024, DOI:10.32604/cmes.2023.029938

    Abstract As massive underground projects have become popular in dense urban cities, a problem has arisen: which model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However, performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques in this field… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF A STATIONARY SQUARE DUCT ROUGHENED BY V AND ᴧ-SHAPED RIBS

    Anand Shuklaa, Alok Chaubeb, Shailesh Guptac, Arvind Sirsathc

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.14

    Abstract One of the traditional methods used to improve the efficiency of a gas turbine is to increases the inlet temperature; thereby increasing the power output and in turn, the efficiency. The internal cooling passages of blades are roughened by artificial roughness to improve the cooling performance. The present study investigates the convective heat transfer and friction factor (pressure drop) characteristics of a rib-roughened square duct. The test section of the duct is roughened on its top and bottom wall with V and ᴧ- shaped square ribs. In the study, the Reynolds number (Re) varied from 10,000… More >

  • Open Access

    ARTICLE

    Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades

    Yuanjun Dai1,2,*, Xin Wei1, Baohua Li1, Cong Wang1, Kunju Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 337-348, 2024, DOI:10.32604/fdmp.2023.042434

    Abstract To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades, unworn blades and trailing-edge worn blades have been assessed through relevant modal tests. According to these experiments, the natural frequencies of trailing-edge worn blades −1, −2, and −3 increase the most in the second to fourth order, the fifth order increases in the middle, and the first order increases the least. The damping ratio data indicate that, in general, the first five-order damping ratios of trailing-edge worn blades −1 and trailing-edge worn blades −2 are reduced, and the first five-order More >

  • Open Access

    ARTICLE

    Geometric Morphometrics Applied to Cartography

    Frédéric Roulier*

    Revue Internationale de Géomatique, Vol.32, pp. 17-37, 2023, DOI:10.32604/RIG.2023.045458

    Abstract The morphological differences between two geographical maps can be highlighted by a polycentric distance cartogram resulting from a bidimensional regression. Beyond the communicational interest of the transformations thus produced, the method makes it possible to reveal the differences in structure and therefore constitutes a real research tool. However, bidimensional regression can only compare the shape of two maps. Since the 1990s, geometric morphometrics has revolutionized the morphological analysis of natural structures (and others). It has since been applied in many fields of research but not in cartography. This article describes the theoretical and methodological bases More > Graphic Abstract

    Geometric Morphometrics Applied to Cartography

  • Open Access

    ARTICLE

    An Experimental Investigation of Aero-Foil-Shaped Pin Fin Arrays

    Mainak Bhaumik1, Anirban Sur2,*, Kavita Dhanawade3

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 467-486, 2023, DOI:10.32604/fhmt.2023.044605

    Abstract Pin fins are widely used in applications where effective heat transfer is crucial. Their compact design, high surface area, and efficient heat transfer characteristics make them a practical choice for many thermal management applications. But for a high heat transfer rate and lightweight application, aerofoil shape pin fins are a good option. This work focuses on an experimental model analysis of pin-fins with aerofoil shapes. The results were evaluated between perforation, no perforation, inline, and staggered fin configurations. Aluminum is used to make the pin fins array. The experiment is carried out inside a wind… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATIONS ON HEAT TRANSFER AND FLOW STRUCTURE IN A CIRCULAR TUBE WITH VARIOUS SHAPES OF WINGLET VORTEX GENERATORS

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-16, 2016, DOI:10.5098/hmt.7.22

    Abstract The numerical investigations on flow structure, heat transfer characteristic and thermal performance in a circular tube heat exchanger with various shapes of winglet vortex generators are reported. The rectangular winglet vortex generators (RWVG), delta winglet vortex generators (DWVG) and curve winglet vortex generators (CWVG) are inserted in the middle of the test tube on both downstream and upstream arrangements. The effects of blockage ratios; BR = 0.1 – 0.3, with single pitch ratio (PR = 1) and flow attack angle (α = 30o) on thermal performance are studied for the Reynolds numbers; Re = 100 – 2000. The… More >

  • Open Access

    ARTICLE

    EFFECT OF DIFFERENT SHAPES ON CHARACTERISTICS OF CONJUGATE HEAT TRANSFER OF MICRO CHANNEL HEAT SINK

    Ankit Kanor, R Manimaran*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-5, 2016, DOI:10.5098/hmt.7.25

    Abstract One of the effective liquid cooling techniques for microelectronic devices is attaching micro channel heat sink to the inactive side of chip. A micro channel heat sink is a device that decreases temperature by flowing coolant through micro channels. The present study focuses on the conjugate heat transfer analyses for different cross-sections (trapezoidal, hexagonal, octagonal and circular).After present study is validated with the published result in the literature, the comparative study of parallel and counter flow configuration is performed. Different geometries are modeled using CATIA V5 software and simulated in ANSYS Fluent R14. From these More >

  • Open Access

    ARTICLE

    Assessment of Dependent Performance Shaping Factors in SPAR-H Based on Pearson Correlation Coefficient

    Xiaoyan Su1,*, Shuwen Shang1, Zhihui Xu2, Hong Qian1, Xiaolei Pan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1813-1826, 2024, DOI:10.32604/cmes.2023.030957

    Abstract With the improvement of equipment reliability, human factors have become the most uncertain part in the system. The standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) method is a reliable method in the field of human reliability analysis (HRA) to evaluate human reliability and assess risk in large complex systems. However, the classical SPAR-H method does not consider the dependencies among performance shaping factors (PSFs), which may cause overestimation or underestimation of the risk of the actual situation. To address this issue, this paper proposes a new method to deal with the dependencies among PSFs More > Graphic Abstract

    Assessment of Dependent Performance Shaping Factors in SPAR-H Based on Pearson Correlation Coefficient

  • Open Access

    PROCEEDINGS

    Comprehensive Simulation of Hot Shape Rolling by Considering the Casting Defects

    Umut Hanoglu1,2,*, Božidar Šarler1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09610

    Abstract In this research, a rolling simulation system based on a novel meshless solution procedure is upgraded considering casting defects in the material model. The improved model can predict the final stage of the defects after multi-pass rolling. The casted steel billet that enters the rolling mill arrives with casting defects. Those defects may be porosity due to the shrinkage and cavity or micro-cracks near the surface due to hot tearing. In this work, porosity is considered the main defect source since it can easily be determined experimentally. The damage theory develops a damaged stiffness matrix… More >

Displaying 21-30 on page 3 of 286. Per Page