Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (284)
  • Open Access

    ARTICLE

    Fusion of Feature Ranking Methods for an Effective Intrusion Detection System

    Seshu Bhavani Mallampati1, Seetha Hari2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1721-1744, 2023, DOI:10.32604/cmc.2023.040567

    Abstract Expanding internet-connected services has increased cyberattacks, many of which have grave and disastrous repercussions. An Intrusion Detection System (IDS) plays an essential role in network security since it helps to protect the network from vulnerabilities and attacks. Although extensive research was reported in IDS, detecting novel intrusions with optimal features and reducing false alarm rates are still challenging. Therefore, we developed a novel fusion-based feature importance method to reduce the high dimensional feature space, which helps to identify attacks accurately with less false alarm rate. Initially, to improve training data quality, various preprocessing techniques are… More >

  • Open Access

    ARTICLE

    Explainable Artificial Intelligence-Based Model Drift Detection Applicable to Unsupervised Environments

    Yongsoo Lee, Yeeun Lee, Eungyu Lee, Taejin Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1701-1719, 2023, DOI:10.32604/cmc.2023.040235

    Abstract Cybersecurity increasingly relies on machine learning (ML) models to respond to and detect attacks. However, the rapidly changing data environment makes model life-cycle management after deployment essential. Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models. However, detecting drift in unsupervised environments can be challenging. This study introduces a novel approach leveraging Shapley additive explanations (SHAP), a widely recognized explainability technique in ML, to address drift detection in unsupervised settings. The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a… More >

  • Open Access

    PROCEEDINGS

    A Shape Optimization Approach for 3D Doubly-Periodic Multi-Layered Systems

    Haibo Chen1,*, Fuhang Jiang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09414

    Abstract Acoustic wave propagation has been the subject of many studies in engineering and physics. Researchers have shown an increased interest in recent years in the acoustic scattering of periodic systems, such as phononic crystals and metamaterials [1]. These artificial periodic systems possess some particular acoustic characteristics including noise control, waveguides and negative refraction, which manifest excellent potential applicability in acoustic engineering. Based on the isogeometric acoustic boundary element method (BEM) [2], an efficient shape optimization approach is proposed in this research for threedimensional doubly-periodic multi-layered systems. The interfaces between different acoustic mediums are infinite doubly… More >

  • Open Access

    PROCEEDINGS

    Inertial and Particle Shape Effects on Fluid-Particle Suspension Flows: A Resolved SPH-DEM Study

    Yueting Li1,*, Ning Guo1, Zhongxuan Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09970

    Abstract The rheological behavior of fluid-particle suspensions affects the flow dynamics of natural processes such as lavas, flow-type landslides and sediment transport. This study presents results of fully resolved simulations of monodisperse non-Brownian suspensions in a Couette flow using the smoothed particle hydrodynamics (SPH) method coupled with discrete element method (DEM), which allows for simulation of arbitrary-shaped particles. Several benchmark tests have been conducted to verify the reliability of the method. Two density ratios are considered in the study, i.e., 2.65 and 10, with the average particle area fraction varying from 14% to 47% and particle More >

  • Open Access

    ARTICLE

    Explainable AI and Interpretable Model for Insurance Premium Prediction

    Umar Abdulkadir Isa*, Anil Fernando*

    Journal on Artificial Intelligence, Vol.5, pp. 31-42, 2023, DOI:10.32604/jai.2023.040213

    Abstract Traditional machine learning metrics (TMLMs) are quite useful for the current research work precision, recall, accuracy, MSE and RMSE. Not enough for a practitioner to be confident about the performance and dependability of innovative interpretable model 85%–92%. We included in the prediction process, machine learning models (MLMs) with greater than 99% accuracy with a sensitivity of 95%–98% and specifically in the database. We need to explain the model to domain specialists through the MLMs. Human-understandable explanations in addition to ML professionals must establish trust in the prediction of our model. This is achieved by creating… More >

  • Open Access

    ARTICLE

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

    Cho Mar Aye1, Kittinan Wansaseub2, Sumit Kumar3, Ghanshyam G. Tejani4, Sujin Bureerat1, Ali R. Yildiz5, Nantiwat Pholdee1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2111-2128, 2023, DOI:10.32604/cmes.2023.028632

    Abstract This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization. The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints. Computational Fluid Dynamic (CFD) and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value. A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed. To validate and further assess the proposed methods, a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied More > Graphic Abstract

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

  • Open Access

    ARTICLE

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

    Ola Ragb1, Mokhtar Mohamed2, Mohamed S. Matbuly1, Omer Civalek3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2193-2217, 2023, DOI:10.32604/cmes.2023.028992

    Abstract Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices. The mathematical model for organic polymer solar cells contains a nonlinear diffusion–reaction partial differential equation system with electrostatic convection attached to a kinetic ordinary differential equation. To solve the problem, Polynomial-based differential quadrature, Sinc, and Discrete singular convolution are combined with block marching techniques. These schemes are employed to reduce the problem to a nonlinear algebraic system. The iterative quadrature technique is used to solve the reduced problem. The obtained results agreed with the previous exact one and the finite More > Graphic Abstract

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

  • Open Access

    ARTICLE

    INFLUENCE OF PORE WALL SURFACE PROPERTY ON FLUX OF CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-6, 2017, DOI:10.5098/hmt.9.26

    Abstract The influence of pore wall surface property on the flux of a novel cylindrical-shaped nanoporous filtering membrane is analytically studied by using the flow factor approach model for a nanoscale flow. Across the thickness of the membrane are manufactured two concentric cylindrical pores with different radii. The smaller nanoscale pore is for filtration, while the other larger pore is for reducing the flow resistance. It was found that when the larger pore wall surface is hydrophobic, the interaction between the filtered liquid and the smaller pore wall surface has a very significant effect on the More >

  • Open Access

    ARTICLE

    A TREE-TYPE CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-5, 2018, DOI:10.5098/hmt.10.16

    Abstract A tree-type cylindrical-shaped nanoporous filtering membrane is proposed. Across the thickness of this membrane are manufactured two kinds of pores i.e. one trunk pore and four uniform branch pores, these two kinds of pores have the same homogeneous surface property and are linked together, and they are uniformly distributed on the membrane surface; The branch pore is for filtration and its radius is on the 1nm or 10nm scales, while the trunk pore is for collecting the flow coming from its four branch pores and it is aimed for reducing the flow resistance and increasing… More >

  • Open Access

    ARTICLE

    CONVECTIVE HEAT TRANSFER, FRICTION FACTOR AND THERMAL PERFORMANCE IN A ROUND TUBE EQUIPPED WITH THE MODIFIED V-SHAPED BAFFLE

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-19, 2018, DOI:10.5098/hmt.10.6

    Abstract Convective heat transfer, pressure loss and thermal performance in a heat exchanger tube inserted with the modified V-shaped baffle are investigated numerically. The influences of the flow attack angle (α = 20o , 30o and 45o ), baffle height in term of blockage ratio (b/D = BR = 0.05, 0.10, 0.15, 0.20 and 0.25) and arrangement (The V-tip pointing downstream is called “V-Downstream”, while the V-tip pointing upstream is named “V-Upstream”.) on heat transfer and friction loss are presented for the Reynolds number in range 100 – 1200 (laminar region). The numerical study (finite volume… More >

Displaying 31-40 on page 4 of 284. Per Page