Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (281)
  • Open Access

    ARTICLE

    NUMERICAL SIMULATION FOR INVERSE HEAT CONDUCTION PROBLEM OF SINGLE-LAYER LINING EROSION OF BLAST FURNACE

    Fuyong Sua,*, Rui Songa , Peiwei Nia , Zhi Wenb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-5, 2019, DOI:10.5098/hmt.12.25

    Abstract A mathematical model of the inverse heat transfer problem of blast furnace lining is established in this study. Following the identification of the boundary conditions of the model, the inverse problem via the conjugate gradient method was decomposed into three issues: the direct problem, the sensitivity problem, and the adjoint problem. The feasibility of the model was verified through two types of real inner wall boundary shape functions. The effects of the initial inner wall boundary shape function and the number of measuring points are also investigated. Results showed that the accuracy of the inverse More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION ANALYSIS OF A NATURAL CONVECTION INSIDE A SINUSOIDAL ENCLOSURE WITH DIFFERENT SHAPES OF CYLINDERS

    Hussein M. Jassim, Farooq H. Ali* , Qusay R. Al-Amir, Hameed K. Hamzah, Salwan Obaid Waheed Khafaji

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.22

    Abstract This study is focused on the entropy generation of laminar natural convection inside a sinusoidal enclosure filled with air (Pr=0.71). The numerical investigation is performed for three shapes of inner cylinders (circle, square, and equilateral triangle) with the same area and different values of the Rayleigh number (103-106). Galerkin Finite Element Approach is utilized to solve the governing equations. The results showed that the entropy generations due to heat transfer, fluid friction and total entropy generation increase with increasing values of Rayleigh number, while the local Bejan number decreases. More >

  • Open Access

    ARTICLE

    ESTIMATION AND VALIDATION OF INTERFACIAL HEAT TRANSFER COEFFICIENT DURING SOLIDIFICATION OF SPHERICAL SHAPED ALUMINUM ALLOY (AL 6061) CASTING USING INVERSE CONTROL VOLUME TECHNIQUE

    L. Anna Gowsalyaa , P.D. Jeyakumarb,*, R. Rajaramanc,†, R. Velrajd

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-7, 2019, DOI:10.5098/hmt.12.21

    Abstract Solidification of casting is a complex phenomenon which requires accurate input to simulate for real time applications. Interfacial heat transfer coefficient (IHTC) is an important input parameter for the simulation process. The IHTC is varying with respect to time during solidification and the exact value is to be given as input for the accurate simulation of the casting process. In this work an attempt is made to estimate the IHTC during solidification of spherical shaped aluminum alloy component with sand mould. The mould surface heat flux and mould surface temperatures are estimated by inverse control More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER CHARACTERISTICS OF AIR IN SQUARE CHANNEL HEAT EXCHANGER WITH C-SHAPED BAFFLE: A NUMERICAL STUDY

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-18, 2019, DOI:10.5098/hmt.13.23

    Abstract The purpose of the present work is to study flow configuration and heat transfer behavior in a square channel heat exchanger equipped with C-shaped baffle. The influences of flow attack angle and baffle size on flow and heat transfer characteristics are considered for the laminar flow regime with the Reynolds number around 100 – 2000. The numerical study with finite volume method is selected for the present investigation. The SIMPLE algorithms is opted to solve the numerical problem. The numerical results are concluded in terms of flow and heat transfer mechanisms in the tested section.… More >

  • Open Access

    ARTICLE

    Royal Crown Shaped Polarization Insensitive Perfect Metamaterial Absorber for C-, X-, and Ku-Band Applications

    Md. Salah Uddin Afsar1, Mohammad Rashed Iqbal Faruque1,*, Sabirin Abdullah1, Mohammad Tariqul Islam2

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 455-469, 2023, DOI:10.32604/cmc.2023.036655

    Abstract This study proposed a new royal crown-shaped polarisation insensitive double negative triple band microwave range electromagnetic metamaterial absorber (MA). The primary purpose of this study is to utilise the exotic characteristics of this perfect metamaterial absorber (PMA) for microwave wireless communications. The fundamental unit cell of the proposed MA consists of two pentagonal-shaped resonators and two inverse C-shaped metallic components surrounded by a split ring resonator (SRR). The bottom thin copper deposit and upper metallic resonator surface are disjoined by an FR-4 dielectric substrate with 1.6 mm thickness. The CST MW studio, a high-frequency electromagnetic… More >

  • Open Access

    ARTICLE

    A Speech Cryptosystem Using the New Chaotic System with a Capsule-Shaped Equilibrium Curve

    Mohamad Afendee Mohamed1, Talal Bonny2, Aceng Sambas3, Sundarapandian Vaidyanathan4, Wafaa Al Nassan2, Sen Zhang5, Khaled Obaideen2, Mustafa Mamat1, Mohd Kamal Mohd Nawawi6,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5987-6006, 2023, DOI:10.32604/cmc.2023.035668

    Abstract In recent years, there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle, butterfly, heart and apple. This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve. The proposed chaotic system has two quadratic, two cubic and two quartic nonlinear terms. It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points. It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but… More >

  • Open Access

    ARTICLE

    NATURAL CONVECTON IN SINUSOIDAL–CORRUGTED ENCLOSURE UTITIING SILVER/WATER NANOLUID WITH DIFFERENT SHAPES OF CONCENTRIC INNER CYLINDERS

    Emad D. Aboud1 , Qusay Rasheed Al-Amir2, Hameed K. Hamzah2, Ammar Abdulkadhim3, Mustafa M. Gabir3, Salwan Obaid Waheed Khafaji2, Farooq H. Ali2,*

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-17, 2021, DOI:10.5098/hmt.17.19

    Abstract The natural convection of nanofluid flow, which occurs between a sinusoidal-corrugated enclosure and a concentric inner cylinder has been numerically investigated. The two horizontal walls of this enclosure are considered adiabatic and two vertical corrugated walls are held at a constant value of the cold temperature while the inner concentric cylinder is heated isothermally. Different cylinder geometries (i.e, circular, square, rhombus, and triangular) located inside the enclosure are examined to find the best shape for optimum heat transfer. The physical and geometrical parameters influencing heat transfer are Rayleigh number (Ra=103 -106), undulation numbers (N=0,1 and 2),… More >

  • Open Access

    ARTICLE

    EFFECT OF FIN SHAPE ON THERMAL PERFORMANCE ENHANCEMENT OF PCM-BASED LOW-GRADE HEAT HARNESSING EXCHANGER

    Layth M. Jaleela , Hayder M. Jaffalb,*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.37

    Abstract The phase change material (PCM)-based low-grade heat harnessing exchanger is used to study the recovering wasted energy from grey water. This experimental study investigated the effect of fin shape on improving the thermal performance of a PCM-based low-grade heat harnessing exchanger. Three heat exchangers of equal dimensions, namely, finless, inclined finned and V-shaped finned heat exchangers, were manufactured and tested in a container containing the PCM. A finless heat exchanger was adopted as a base case to demonstrate the improvement of heat transfer by using fins. The finless heat exchanger consists of two serpentine tubes… More >

  • Open Access

    ARTICLE

    CHARACTERISTICS AND THERMAL PERFORMANCE OF NANOFLUID FILM OVER HORIZONTAL MULTI-FACETED CYLINDER

    Fithry Mohd Amir*, Mohd Zamri Yusoff, Saiful Hasmady Abu Hassan

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-15, 2022, DOI:10.5098/hmt.18.27

    Abstract Nanofluid film on a horizontal tube is investigated numerically on the circular and multi-faceted cylinder. The fluid flow characteristics, including film thickness, shear stress, and thermal performance, are observed and analyzed. Fluid film on the circular surface is typical in many engineering applications, but the study of nanofluid film on non-circular surface is deficient in literature. The study provides a numerical model of a multi-faceted cylinder to simulate the nanofluid film on the non-circular surfaces using a volume of fluid (VOF) method. The ratio of Brownian motion to thermophoretic diffusion, NBT developed along the film thickness More >

  • Open Access

    ARTICLE

    NATURAL CONVECTION IN A PARTIALLY HEATED PARALLELOGRAMMICAL CAVITY WITH V-SHAPED BAFFLE AND FILLED WITH VARIOUS NANOFLUIDS

    Zainab Kareem Ghobena,*,†, Ahmed Kadhim Husseinb

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-11, 2022, DOI:10.5098/hmt.18.6

    Abstract he numerical analysis of a V-shaped baffle effect on the natural convection inside a parallelogrammical cavity filled with two different water-based nanofluids (Al2O3 and Cu) were studied in this work. The enclosure walls were maintained at a constant hot and cold temperatures on the left and right walls sequentially. The horizontal walls were isolated, while the baffles located on the right wall and sharing the same cold temperature with it. The finite element method was used to derive and solve the governing equations. The flow and thermal fields computed for different arrangements of: the number… More >

Displaying 41-50 on page 5 of 281. Per Page