Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,357)
  • Open Access

    ARTICLE

    Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet

    G. Q. Xie1, J. P. Wang2, Q. L. Zhang1

    CMC-Computers, Materials & Continua, Vol.48, No.2, pp. 103-117, 2015, DOI:10.3970/cmc.2015.048.103

    Abstract Small-scale effect on the static deflection of a clamped graphene sheet and influence of the helical angle of the clamped graphene sheet on its static deflection are investigated. Static equilibrium equations of the graphene sheet are formulated based on the concept of nonlocal elastic theory. Galerkin method is used to obtain the classical and the nonlocal static deflection from Static equilibrium equations , respectively. The numerical results show that the static deflection and small-scale effect of a clamped graphene sheet is affected by its small size and helical angle. Small-scale effect will decrease with increase of the length and width… More >

  • Open Access

    ARTICLE

    Research and Improvement on the Accuracy of Discontinuous Smoothed Particle Hydrodynamics (DSPH) Method

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 179-201, 2015, DOI:10.3970/cmc.2015.047.179

    Abstract Discontinuous smoothed particle hydrodynamics (DSPH) method based on traditional SPH method, which can be used to simulate discontinuous physics problems near interface or boundary. Previous works showed that DSPH method has a good application prospect [Xu et al, 2013], but further verification and improvement are demanded. In this paper, we investigate the accuracy of DSPH method by some numerical models. Moreover, to improve the accuracy of DSPH method, first order and second order multidimensional RDSPH methods are proposed by following the idea of restoring particle consistency in SPH (RSPH) method which has shown good results in the improvement of particle… More >

  • Open Access

    ARTICLE

    Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams

    M. C. Ray1, L. Dong2, S. N. Atluri3

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 143-177, 2015, DOI:10.3970/cmc.2015.047.143

    Abstract This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an “equivalent single layer high order shear deformation… More >

  • Open Access

    ARTICLE

    On the Tactile Sensing Based on the Smart Materials

    Ligia Munteanu1, Dan Dumitriu1, Veturia Chiroiu1, Cornel Bri¸san2, Doina Marin1

    CMC-Computers, Materials & Continua, Vol.46, No.2, pp. 79-103, 2015, DOI:10.3970/cmc.2015.046.079

    Abstract A flexible finger with muscles made of Nitinol wires and the skin made of auxetic material is analyzed from the tactile sensing point of view. The recognizing of the shape and texture of 3D objects is performed by simulation the action of an array of nanopiezotronic transistors integrated into the skin. The array of nanopiezotronic transistors makes possible the detection of the pressure-induced changes in the auxetic skin. The shape and texture of the objects is best estimated by determining the surface and texture as an n-ellipsoid defined by 12 parameters. An inverse problem is solved in order to find… More >

  • Open Access

    ARTICLE

    From Geometric Transformations to Auxetic Metamaterials

    Ligia Munteanu1, Veturia Chiroiu1, Viorel Şerban2

    CMC-Computers, Materials & Continua, Vol.42, No.3, pp. 175-204, 2014, DOI:10.3970/cmc.2014.042.175

    Abstract The paper introduces a new alternative towards fabrication of auxetic metamaterials (materials with negative Poisson’s ratio) controlled by geometric transformations. These transformations are derived from the theory of small (infinitesimal) elastic deformation superimposed on finite elastic deformations. By using this theory, a cylindrical region filled with initial deformed foam is transformed through deformation into a cylindrical shell region filled with auxetic metamaterial. As an example, the realization of the seismic cloak device becomes a practical possibility. More >

  • Open Access

    ARTICLE

    A Numerical Modeling of Failure Mechanism for SiC Particle Reinforced Metal-Metrix Composites

    Qiubao Ouyang1, Di Zhang1,2, Xinhai Zhu3, Zhidong Han3

    CMC-Computers, Materials & Continua, Vol.41, No.1, pp. 37-54, 2014, DOI:10.3970/cmc.2014.041.037

    Abstract The present work is to investigate the failure mechanisms in the deformation of silicon carbide (SiC) particle reinforced aluminum Metal Matrix Composites (MMCs). To better deal with crack growth, a new numerical approach: the MLPG-Eshelby Method is used. This approach is based on the meshless local weak-forms of the Noether/Eshelby Energy Conservation Laws and it achieves a faster convergent rate and is of good accuracy. In addition, it is much easier for this method to allow material to separate in the material fracture processes, comparing to the conventional popular FEM based method. Based on a statistical method and physical observations,… More >

  • Open Access

    ARTICLE

    Graded Dielectric Inhomogeneous Planar Layer Radome for Aerospace Applications

    Raveendranath U. Nair, Preethi D.S, R. M. Jha

    CMC-Computers, Materials & Continua, Vol.40, No.2, pp. 131-144, 2014, DOI:10.3970/cmc.2014.040.131

    Abstract Controllable artificial dielectrics are used in the design of radomes to enhance their electromagnetic (EM) performance. The fabrication of such radome wall structures with controllable dielectric parameters seems to be an arduous task. Further even minor fluctuations of dielectric properties of radome wall due to fabrication uncertainties tend to result in drastic degradation of radome performance parameters. In the present work, a novel inhomogeneous radome with graded variation of dielectric parameters is proposed which limits the constraints on fabrication and facilitates excellent EM performance characteristics. This radome wall consists of five dielectric layers cascaded such that the middle layer has… More >

  • Open Access

    ARTICLE

    Polarization Independent Dual-band Metamaterial Based Radar Absorbing Structure (RAS) for MillimeterWave Applications

    Shiv Narayan1, Latha S.1 and R M Jha1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 217-230, 2014, DOI:10.3970/cmc.2014.039.217

    Abstract The EM analysis of multi-layered metamaterial based radar absorbing structure (RAS) with dual-band characteristics in millimeter wave frequency regime has been carried out in this paper using transmission line transfer matrix (TLTM) method for TE and TM polarizations. The proposed metamaterial-based RAS exhibits dual-band characteristics at centre frequencies 120 GHz and 175 GHz with very low power reflection. It absorbs more than 90% power of incidence wave over the frequency range from 111-131 GHz at first resonance and from 164.5-185 GHz at second resonance without metal backing plate, which is desirable for stealth applications. It also showed very low (<… More >

  • Open Access

    ARTICLE

    Toughening Mechanisms in Carbon Nanotube-Reinforced Amorphous Carbon Matrix Composites

    J.B. Niu1, L.L. Li2, Q. Xu1, Z.H. Xia1,3

    CMC-Computers, Materials & Continua, Vol.38, No.1, pp. 31-41, 2013, DOI:10.3970/cmc.2013.038.031

    Abstract Crack deflection and penetration at the interface of multi-wall carbon nanotube/amorphous carbon composites were studied via molecular dynamics simulations. In-situ strength of double-wall nanotubes bridging a matrix crack was calculated under various interfacial conditions. The structure of the nanotube reinforcement -ideal multi-wall vs. multi-wall with interwall sp3 bonding - influences the interfacial sliding and crack penetration. When the nanotube/matrix interface is strong, matrix crack penetrates the outermost layer of nanotubes but it deflects within the nanotubes with certain sp3 interwall bond density, resulting in inner wall pullout. With increasing the sp3 interwall bond density, the fracture mode becomes brittle; the… More >

  • Open Access

    ARTICLE

    Taguching the Atmospheric Plasma Spraying Process: Influence of Processing Factors on Droplet Impact Properties Obtained on Dense ZrO2 and H2Ar75% Plasma Gas

    Ridha Djebali1, Mohsen Toujani2, Bernard Pateyron3

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 147-160, 2013, DOI:10.3970/cmc.2013.037.147

    Abstract In this paper a study of the atmospheric plasma spraying process was conducted. The Jets&Poudres code was used to solve the partial differential equations for the conservation of mass, momentum and energy involved in the problem together with the K-e turbulent model. The Taguchi technique was used to study the influence of processing factors on droplet impact properties obtained on dense zirconia (ZrO2) under H2Ar75% plasma gas that allow optimal functioning condition. The test of the operating parameters for the studied ranges showed that the "thermal power" factor plays a key role on the state of sprayed powder. It was… More >

Displaying 2331-2340 on page 234 of 2357. Per Page