Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Multi-Class Sentiment Analysis of Social Media Data with Machine Learning Algorithms

    Galimkair Mutanov, Vladislav Karyukin*, Zhanl Mamykova

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 913-930, 2021, DOI:10.32604/cmc.2021.017827 - 04 June 2021

    Abstract The volume of social media data on the Internet is constantly growing. This has created a substantial research field for data analysts. The diversity of articles, posts, and comments on news websites and social networks astonishes imagination. Nevertheless, most researchers focus on posts on Twitter that have a specific format and length restriction. The majority of them are written in the English language. As relatively few works have paid attention to sentiment analysis in the Russian and Kazakh languages, this article thoroughly analyzes news posts in the Kazakhstan media space. The amassed datasets include texts… More >

  • Open Access

    ARTICLE

    Oversampling Methods Combined Clustering and Data Cleaning for Imbalanced Network Data

    Yang Yang1,*, Qian Zhao1, Linna Ruan2, Zhipeng Gao1, Yonghua Huo3, Xuesong Qiu1

    Intelligent Automation & Soft Computing, Vol.26, No.5, pp. 1139-1155, 2020, DOI:10.32604/iasc.2020.011705

    Abstract In network anomaly detection, network traffic data are often imbalanced, that is, certain classes of network traffic data have a large sample data volume while other classes have few, resulting in reduced overall network traffic anomaly detection on a minority class of samples. For imbalanced data, researchers have proposed the use of oversampling techniques to balance data sets; in particular, an oversampling method called the SMOTE provides a simple and effective solution for balancing data sets. However, current oversampling methods suffer from the generation of noisy samples and poor information quality. Hence, this study proposes More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Based on Machine Learning

    Yong Fang1, Yunyun Zhang2, Cheng Huang1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 185-195, 2019, DOI:10.32604/cmc.2019.06144

    Abstract In recent years, the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit. Credit card transactions take a salient role in nowadays’ online transactions for its obvious advantages including discounts and earning credit card points. So credit card fraudulence has become a target of concern. In order to deal with the situation, credit card fraud detection based on machine learning is been studied recently. Yet, it is difficult to detect fraudulent transactions due to data imbalance (normal and fraudulent transactions), for which Smote algorithm is proposed in order to resolve… More >

  • Open Access

    ARTICLE

    Improving Performance Prediction on Education Data with Noise and Class Imbalance

    Akram M. Radwana,b, Zehra Cataltepea,c

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 777-783, 2018, DOI:10.1080/10798587.2017.1337673

    Abstract This paper proposes to apply machine learning techniques to predict students’ performance on two real-world educational data-sets. The first data-set is used to predict the response of students with autism while they learn a specific task, whereas the second one is used to predict students’ failure at a secondary school. The two data-sets suffer from two major problems that can negatively impact the ability of classification models to predict the correct label; class imbalance and class noise. A series of experiments have been carried out to improve the quality of training data, and hence improve… More >

Displaying 21-30 on page 3 of 24. Per Page