Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Enhancing Network Security: Leveraging Machine Learning for Integrated Protection and Intrusion Detection

    Nada Mohammed Murad1, Adnan Yousif Dawod2, Saadaldeen Rashid Ahmed3,4,*, Ravi Sekhar5, Pritesh Shah5

    Intelligent Automation & Soft Computing, Vol.40, pp. 1-27, 2025, DOI:10.32604/iasc.2024.058624 - 10 January 2025

    Abstract This study introduces an innovative hybrid approach that integrates deep learning with blockchain technology to improve cybersecurity, focusing on network intrusion detection systems (NIDS). The main goal is to overcome the shortcomings of conventional intrusion detection techniques by developing a more flexible and robust security architecture. We use seven unique machine learning models to improve detection skills, emphasizing data quality, traceability, and transparency, facilitated by a blockchain layer that safeguards against data modification and ensures auditability. Our technique employs the Synthetic Minority Oversampling Technique (SMOTE) to equilibrate the dataset, therefore mitigating prevalent class imbalance difficulties… More >

  • Open Access

    ARTICLE

    RE-SMOTE: A Novel Imbalanced Sampling Method Based on SMOTE with Radius Estimation

    Dazhi E1, Jiale Liu2, Ming Zhang1,*, Huiyuan Jiang2, Keming Mao2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3853-3880, 2024, DOI:10.32604/cmc.2024.057538 - 19 December 2024

    Abstract Imbalance is a distinctive feature of many datasets, and how to make the dataset balanced become a hot topic in the machine learning field. The Synthetic Minority Oversampling Technique (SMOTE) is the classical method to solve this problem. Although much research has been conducted on SMOTE, there is still the problem of synthetic sample singularity. To solve the issues of class imbalance and diversity of generated samples, this paper proposes a hybrid resampling method for binary imbalanced data sets, RE-SMOTE, which is designed based on the improvements of two oversampling methods parameter-free SMOTE (PF-SMOTE) and… More >

  • Open Access

    ARTICLE

    A Novel Framework for Learning and Classifying the Imbalanced Multi-Label Data

    P. K. A. Chitra1, S. Appavu alias Balamurugan2, S. Geetha3, Seifedine Kadry4,5,6, Jungeun Kim7,*, Keejun Han8

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1367-1385, 2024, DOI:10.32604/csse.2023.034373 - 13 September 2024

    Abstract A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label learning. The main objective of this work is to create a novel framework for learning and classifying imbalanced multi-label data. This work proposes a framework of two phases. The imbalanced distribution of the multi-label dataset is addressed through the proposed Borderline MLSMOTE resampling method in phase 1. Later, an adaptive weighted l21 norm regularized (Elastic-net) multi-label logistic regression is used to predict unseen samples in phase 2. The proposed… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187 - 27 February 2024

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on… More >

  • Open Access

    ARTICLE

    Stroke Risk Assessment Decision-Making Using a Machine Learning Model: Logistic-AdaBoost

    Congjun Rao1, Mengxi Li1, Tingting Huang2,*, Feiyu Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 699-724, 2024, DOI:10.32604/cmes.2023.044898 - 30 December 2023

    Abstract Stroke is a chronic cerebrovascular disease that carries a high risk. Stroke risk assessment is of great significance in preventing, reversing and reducing the spread and the health hazards caused by stroke. Aiming to objectively predict and identify strokes, this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost (Logistic-AB) based on machine learning. First, the categorical boosting (CatBoost) method is used to perform feature selection for all features of stroke, and 8 main features are selected to form a new index evaluation system to predict the risk of stroke. Second, the borderline… More >

  • Open Access

    ARTICLE

    Internet of Things (IoT) Security Enhancement Using XGboost Machine Learning Techniques

    Dana F. Doghramachi1,*, Siddeeq Y. Ameen2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 717-732, 2023, DOI:10.32604/cmc.2023.041186 - 31 October 2023

    Abstract The rapid adoption of the Internet of Things (IoT) across industries has revolutionized daily life by providing essential services and leisure activities. However, the inadequate software protection in IoT devices exposes them to cyberattacks with severe consequences. Intrusion Detection Systems (IDS) are vital in mitigating these risks by detecting abnormal network behavior and monitoring safe network traffic. The security research community has shown particular interest in leveraging Machine Learning (ML) approaches to develop practical IDS applications for general cyber networks and IoT environments. However, most available datasets related to Industrial IoT suffer from imbalanced class… More >

  • Open Access

    ARTICLE

    A Stacked Ensemble Deep Learning Approach for Imbalanced Multi-Class Water Quality Index Prediction

    Wen Yee Wong1, Khairunnisa Hasikin1,*, Anis Salwa Mohd Khairuddin2, Sarah Abdul Razak3, Hanee Farzana Hizaddin4, Mohd Istajib Mokhtar5, Muhammad Mokhzaini Azizan6

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1361-1384, 2023, DOI:10.32604/cmc.2023.038045 - 30 August 2023

    Abstract A common difficulty in building prediction models with realworld environmental datasets is the skewed distribution of classes. There are significantly more samples for day-to-day classes, while rare events such as polluted classes are uncommon. Consequently, the limited availability of minority outcomes lowers the classifier’s overall reliability. This study assesses the capability of machine learning (ML) algorithms in tackling imbalanced water quality data based on the metrics of precision, recall, and F1 score. It intends to balance the misled accuracy towards the majority of data. Hence, 10 ML algorithms of its performance are compared. The classifiers… More >

  • Open Access

    ARTICLE

    A Model Training Method for DDoS Detection Using CTGAN under 5GC Traffic

    Yea-Sul Kim1, Ye-Eun Kim1, Hwankuk Kim2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1125-1147, 2023, DOI:10.32604/csse.2023.039550 - 26 May 2023

    Abstract With the commercialization of 5th-generation mobile communications (5G) networks, a large-scale internet of things (IoT) environment is being built. Security is becoming increasingly crucial in 5G network environments due to the growing risk of various distributed denial of service (DDoS) attacks across vast IoT devices. Recently, research on automated intrusion detection using machine learning (ML) for 5G environments has been actively conducted. However, 5G traffic has insufficient data due to privacy protection problems and imbalance problems with significantly fewer attack data. If this data is used to train an ML model, it will likely suffer… More >

  • Open Access

    ARTICLE

    Machine Learning and Synthetic Minority Oversampling Techniques for Imbalanced Data: Improving Machine Failure Prediction

    Yap Bee Wah1,5,*, Azlan Ismail1,2, Nur Niswah Naslina Azid3, Jafreezal Jaafar4, Izzatdin Abdul Aziz4, Mohd Hilmi Hasan4, Jasni Mohamad Zain1,2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4821-4841, 2023, DOI:10.32604/cmc.2023.034470 - 29 April 2023

    Abstract Prediction of machine failure is challenging as the dataset is often imbalanced with a low failure rate. The common approach to handle classification involving imbalanced data is to balance the data using a sampling approach such as random undersampling, random oversampling, or Synthetic Minority Oversampling Technique (SMOTE) algorithms. This paper compared the classification performance of three popular classifiers (Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine) in predicting machine failure in the Oil and Gas industry. The original machine failure dataset consists of 20,473 hourly data and is imbalanced with 19945 (97%) ‘non-failure’ and… More >

Displaying 1-10 on page 1 of 24. Per Page