Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (462)
  • Open Access

    ARTICLE

    Structural and Helix Reversal Defects of Carbon Nanosprings: A Molecular Dynamics Study

    Alexander V. Savin1,2, Elena A. Korznikova3,4, Sergey V. Dmitriev5,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072786 - 09 December 2025

    Abstract Due to their chiral structure, carbon nanosprings possess unique properties that are promising for nanotechnology applications. The structural transformations of carbon nanosprings in the form of spiral macromolecules derived from planar coronene and kekulene molecules (graphene helicoids and spiral nanoribbons) are analyzed using molecular dynamics simulations. The interatomic interactions are described by a force field including valence bonds, bond angles, torsional and dihedral angles, as well as van der Waals interactions. While the tension/compression of such nanosprings has been analyzed in the literature, this study investigates other modes of deformation, including bending and twisting. Depending… More >

  • Open Access

    ARTICLE

    MWaOA: A Bio-Inspired Metaheuristic Algorithm for Resource Allocation in Internet of Things

    Rekha Phadke1, Abdul Lateef Haroon Phulara Shaik2, Dayanidhi Mohapatra3, Doaa Sami Khafaga4,*, Eman Abdullah Aldakheel4, N. Sathyanarayana5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067564 - 09 December 2025

    Abstract Recently, the Internet of Things (IoT) technology has been utilized in a wide range of services and applications which significantly transforms digital ecosystems through seamless interconnectivity between various smart devices. Furthermore, the IoT plays a key role in multiple domains, including industrial automation, smart homes, and intelligent transportation systems. However, an increasing number of connected devices presents significant challenges related to efficient resource allocation and system responsiveness. To address these issue, this research proposes a Modified Walrus Optimization Algorithm (MWaOA) for effective resource management in smart IoT systems. In the proposed MWaOA, a crowding process… More >

  • Open Access

    CASE REPORT

    Successful treatment of rare vaso-vesical fistula with minimally invasive measures despite prior history of radiotherapy: a case report

    Jordan L. Mendelson1,*, Jordan Kassab1, Phillip Westbrook1, Katie Yang2, Anthony Corcoran1

    Canadian Journal of Urology, Vol.32, No.6, pp. 673-676, 2025, DOI:10.32604/cju.2025.063770 - 30 December 2025

    Abstract Stereotactic body radiotherapy (SBRT) for prostate cancer is a generally well-tolerated treatment but can rarely lead to complications such as fistula formation. We report a 69-year-old male on maintenance ibrutinib for chronic lymphocytic leukemia who developed a fistula between his bladder and vas deferens in the setting of ascending scrotal infection. Despite his prior history of SBRT, the fistula was successfully treated with minimally invasive measures. A combination of abscess debridement, urinary diversion, and broad-spectrum antibiotics helped to achieve fistula resolution. The unique presentation described herein highlights the importance of early aggressive intervention for source More >

  • Open Access

    REVIEW

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

    Rafl M. Kamil1, Shaik Nyamathulla1,*, Syed Mahmood1,2,3,4,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 959-992, 2025, DOI:10.32604/jpm.2025.072005 - 26 December 2025

    Abstract With the global diabetes epidemic, diabetic foot ulcers (DFUs) have become a major health burden, affecting approximately 18 million people worldwide each year, and account for about 80% of diabetes-related amputations. Five-year mortality among DFU patients approaches 30%, which is comparable to that of many malignancies. Yet despite standard wound care, only about 30%–40% of chronic DFUs achieve complete healing within 12 weeks. This persistent failure shows that conventional dressings remain passive supports. They do not counteract underlying pathologies such as ischemia, prolonged inflammation, and infection. Recent advances in polymeric nanofiber scaffolds, particularly electrospun matrices,… More > Graphic Abstract

    Polymeric Nanofiber Scaffolds for Diabetic Wound Healing: A Review

  • Open Access

    ARTICLE

    Impedance spectroscopy insights into (NiO)(0.5)/(Fe2O3)(0.5)@C@MoS2 nanofibers composite for tunable EMI shielding applications

    U. Anwara, N. A. Noorb, S. Mumtazc,*, I. M. Moussad1

    Chalcogenide Letters, Vol.22, No.3, pp. 261-276, 2025, DOI:10.15251/CL.2025.223.261

    Abstract The combination of two-step synthesis processes is employed for the fabrication of (NiO)(0.5)/(Fe2O3)(0.5)@C@MoS2 (NFCM) nanofibers composite through electrospinning and hydrothermal techniques. This nanofiber composite is designed for tunable dielectric materials and electromagnetic interference (EMI) shielding applications. Using impedance spectroscopy, the electrical properties of an NFCM pellet are analyzed using an equivalent circuit model (R11<), with a primary focus on the variation of relaxation time with frequency at different temperatures. Utilizing the Mott. variable range hopping (MVRH) model, and small polaronic hopping model, the localization length of the hoping carriers is determined to be 0.98 Å and More >

  • Open Access

    ARTICLE

    Half-metallicity and structural properties of low-concentration Fe-doped SrS alloys: a first-principles study

    S. Saleema, U. Parveena, H. AL-Ghamdib,*, M. Yaseena, I. Sajjada, Nasarullaha

    Chalcogenide Letters, Vol.22, No.3, pp. 223-237, 2025, DOI:10.15251/CL.2025.223.223

    Abstract Present research reveals the doping effect on physical properties of Sr1-xFexS by employing ab-initio calculations. The negative formation energy and optimization outcomes exhibit the stability of the Sr1-xFexS alloys with ferromagnetic phase. Spin dependent band structure (BS) and density of states (DOS) interpret that Sr1-xFexS revealed half metallic ferromagnetic (HMF) nature at 6.25% and 12.5% of Fe doping while metallic character is revealed at 25% concentration of dopant. Spin-up state of Sr0.9375Fe0.0625S and Sr0.8750Fe0.1250S depicts semiconductive behavior with bandgap value of 2.01/2.33 eV, correspondingly, while metallic in spin-down channel. The magnetism in the system is mainly originated because… More >

  • Open Access

    ARTICLE

    Synthesis and photocatalytic performance of ZnS nanoparticles via electrospinning assisted hydrothermal technique

    T. L. Yanga, P. Y. Linb, Y. S. Fuc, C. Y. Luoc, K. C. Hsua,*

    Chalcogenide Letters, Vol.22, No.7, pp. 625-636, 2025, DOI:10.15251/CL.2025.227.625

    Abstract In this study, high-crystallinity zinc sulfide (ZnS) at the nanoscale was synthesized using a combination of electrospinning and hydrothermal techniques. Initially, polyvinyl butyral (PVB)/ZnS composite nanofibers were fabricated via electrospinning. Subsequently, a hydrothermal reaction was employed to induce a dissolution-recrystallization mechanism, enabling the gradual formation of highly crystalline ZnS nanoparticles. The structural, morphological, and compositional characteristics of the ZnS nanoparticles were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Finally, the photocatalytic activity of three different ZnS materials—synthesized via electrospinning, hydrothermal treatment, and hydrothermal-assisted electrospinning—were More >

  • Open Access

    ARTICLE

    Structural, optical and electrical properties of NiO thin films for hole transport layer in chalcogenide and perovskite materials based solar cells

    M. Abbasa, M. Haseeb-u-Rehmana, M. Sohailb, G. H. Tariqa,*

    Chalcogenide Letters, Vol.22, No.7, pp. 561-577, 2025, DOI:10.15251/CL.2025.227.561

    Abstract This work presents the fabrication of NiO thin films via versatile sol-gel spin coating method and investigation of annealing effects on their physical properties. After the deposition process, the NiO thin films underwent annealing process at different values of temperatures ranging from 200°C to 350°C for one hour duration. XRD patterns confirmed the polycrystalline nature, along the preferred orientations (110) and (101) planes. Nanoparticles in NiO thin films demonstrated an increase in crystallite size with rising annealing temperatures, reaching a maximum size of 49 nm at annealing temperature 300°C. FTIR patterns revealed Ni-O bands at… More >

  • Open Access

    ARTICLE

    The GGA-mBJ analysis of Ni modified SrS alloys for magnetic ordering and energy harvesting applications

    I. Sajjada, U. Parveen1, H. Al-Ghamdib,*, M. Yaseena, S. Saleema, Nasarullaha

    Chalcogenide Letters, Vol.22, No.9, pp. 829-845, 2025, DOI:10.15251/CL.2025.229.829

    Abstract Herein, we employed modified Becke-Johson (mBJ) potential based first principles method to investigate the structural, optoelectronic, and magnetic properties of pure SrS and Ni doped Sr1-xNixS alloys at varying doping concentrations. Formation enthalpy analysis predicts thermodynamical stability of resultant alloys. Geometry optimization was performed in order to optimize the super cells to obtain ground state energy state. After confirming their stability, we investigated their magnetic, electronic, and optical attributes. Pure SrS exhibits an indirect band gap of 3.53 eV (which is in good agreement with experiments), while nickel doping in SrS results in lowering the bandgap… More >

  • Open Access

    ARTICLE

    A Non-Intrusive Spiral Coil Heat Exchanger for Waste Heat Recovery from HVAC Units: Experimental and Thermal Performance Analysis

    S. Srinivasa senthil, K. Vijayakumar*

    Energy Engineering, Vol.122, No.12, pp. 5149-5173, 2025, DOI:10.32604/ee.2025.070889 - 27 November 2025

    Abstract Heating, ventilation, and air conditioning (HVAC) systems contribute substantially to global energy consumption, while rejecting significant amounts of low-grade heat into the environment. This paper presents a non-intrusive spiral-coil heat exchanger designed to recover waste heat from the outdoor condenser of a split-type air conditioner. The system operates externally without altering the existing HVAC configuration, thereby rendering it suitable for retrofitting. Water was circulated as the working fluid at flow rates of 0.028–0.052 kg/s to assess thermal performance. Performance indicators, including the outlet water temperature, heat transfer rate, convective coefficient, and efficiency, were systematically evaluated.… More >

Displaying 1-10 on page 1 of 462. Per Page