Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    UREA-WATER DROPLET PHASE CHANGE AND REACTION MODELLING: MULTI-COMPONENT EVAPORATION APPROACH

    Viraj S. Shirodkar*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.5

    Abstract Urea-water solution droplet evaporation is modelled using multi-component droplet evaporation approach. The heat and mass transfer process of a multi-component droplet is implemented in the Langrangian framework through a custom code in ANSYS-Fluent R15. The evaporation process is defined by a convection-diffusion controlled model which includes the effect of Stefan flow. A rapid mixing model assumption is used for the droplet internal physics. The code is tested on a single multi-component droplet and the predicted evaporation rates at different ambient temperatures are compared with the experimental data in the literature. The approach is used to model the injection of urea-water… More >

  • Open Access

    ARTICLE

    A XFEM LAGRANGE MULTIPLIER TECHNIQUE FOR STEFAN PROBLEMS

    Dave Martina,b,† , Hicham Chaoukia,b, Jean-Loup Roberta, Donald Zieglerc, Mario Fafarda,b

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.31

    Abstract The two dimensional phase change problem was solved using the extended finite element method with a Lagrange formulation to apply the interface boundary condition. The Lagrange multiplier space is identical to the solution space and does not require stabilization. The solid-liquid interface velocity is determined by the jump in heat flux across the i nterface. Two methods to calculate the jump are used and c ompared. The first is based on an averaged temperature gradient near the interface. The second uses the Lagrange multiplier values to evaluate the jump. The Lagrange multiplier based approach was shown to be more robust… More >

  • Open Access

    ARTICLE

    An Accurate Dynamic Forecast of Photovoltaic Energy Generation

    Anoir Souissi1,*, Imen Guidara1, Maher Chaabene1, Giuseppe Marco Tina2, Moez Bouchouicha3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1683-1698, 2022, DOI:10.32604/fdmp.2022.022051

    Abstract The accurate forecast of the photovoltaic generation (PVG) process is essential to develop optimum installation sizing and pragmatic energy planning and management. This paper proposes a PVG forecast model for a PVG/Battery installation. The forecasting strategy is built on a Medium-Term Energy Forecasting (MTEF) approach refined dynamically every hour (Dynamic Medium-Term Energy Forecasting (DMTEF)) and adjusted by means of a Short-Term Energy Forecasting (STEF) strategy. The MTEF predicts the generated energy for a day ahead based on the PVG of the last 15 days. As for STEF, it is a combination between PVG Short-Term (ST) forecasting and DMTEF methods obtained… More >

  • Open Access

    ARTICLE

    Solution of Phase Change Problems by Collocation with Local Pressure Correction

    G. Kosec1, B. Šarler2

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 191-216, 2009, DOI:10.3970/cmes.2009.047.191

    Abstract This paper explores an application of a novel mesh-free Local Radial Basis Function Collocation Method (LRBFCM) [Sarler and Vertnik (2006)] in solution of coupled heat transfer and fluid flow problems with solid-liquid phase change. The melting/freezing of a pure substance is solved in primitive variables on a fixed grid with convection suppression, proportional to the amount of the solid fraction. The involved temperature, velocity and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF's. The… More >

Displaying 1-10 on page 1 of 4. Per Page