Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (635)
  • Open Access

    ARTICLE

    A New Anisotropic Local Meshing Method and Its Application in Parametric Surface Triangulation

    W.W. Zhang1, Y.F. Nie1, Y.Q. Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.6, pp. 507-530, 2012, DOI:10.3970/cmes.2012.088.507

    Abstract A new algorithm for anisotropic triangular meshes generation in two dimension is presented. The inputs to the algorithm are the boundary geometry information and a metric tensor that specifies the desired element size and shape. The initial nodes are firstly distributed according to the above mentioned geometrical information, after bubble simulation, the optimized nodes set that meets the requirements of the metric tensor is obtained quickly. Then taking full advantage of the nodes set and the adjacency lists information provided by the process of node placement, a handful of non-satellite nodes are removed from the… More >

  • Open Access

    ARTICLE

    The Second-Order Two-Scale Method for Heat Transfer Performances of Periodic Porous Materials with Interior Surface Radiation

    Zhiqiang Yang1, Junzhi Cui2, Yufeng Nie1, Qiang Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.5, pp. 419-442, 2012, DOI:10.3970/cmes.2012.088.419

    Abstract In this paper, a new second-order two-scale (SOTS) method is developed to predict heat transfer performances of periodic porous materials with interior surface radiation. Firstly, the second-order two-scale formulation for computing temperature field of the problem is given by means of construction way. Then, the error estimation of the second-order two-scale approximate solution is derived on some regularity hypothesis. Finally, the corresponding finite element algorithms are proposed and some numerical results are presented. They show that the SOTS method in this paper is feasible and valid for predicting the heat transfer performances of periodic porous More >

  • Open Access

    ARTICLE

    A Higher Order Solution of the Elastic Problem for a Homogeneous, Linear-Elastic and Isotropic Half-Space Subjected to a Point-Load Perpendicular to the Surface

    E. Ferretti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.5, pp. 435-468, 2012, DOI:10.3970/cmes.2012.086.435

    Abstract A recent experimental programme with the aim of acquiring the strains induced by aircraft traffic in concrete pavements [Ferretti and Bignozzi (2012); Ferretti (2012a)] has provided the opportunity of reviewing the classical solution of Boussinesq's problem for a homogeneous linear-elastic and isotropic half-space subjected to a point-load. In this document, we have proposed a second order solution to Boussinesq's problem, which allows us to account for the new experimental evidence. More >

  • Open Access

    ARTICLE

    On the Modeling of Surface Tension and its Applications by the Generalized Interpolation Material Point Method

    L. Chen1 J. H. Lee1, C.-f. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.3, pp. 199-224, 2012, DOI:10.3970/cmes.2012.086.199

    Abstract This paper presents a numerical procedure to model surface tension using the Generalized Interpolation Material Point (GIMP) method which employs a background mesh in solving the equations of motion. The force due to surface tension is formulated at the mesh grid points by using the continuum surface force (CSF) model and then added to the equations of motion at each grid point. In GIMP, we use the grid mass as the color function in CSF and apply a moving average smoothing scheme to the grid mass to improve the accuracy in calculating the surface interface. More >

  • Open Access

    ARTICLE

    A Generalized Level Set-Navier Stokes Numerical Method for Predicting Thermo-Fluid Dynamics of Turbulent Free Surface

    Ashraf Balabel

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.6, pp. 599-638, 2012, DOI:10.3970/cmes.2012.083.599

    Abstract In the present paper, a new generalized level set numerical method based on the Fast Marching Method is developed for predicting the moving interface thermo-fluid dynamics in turbulent free surface flows. The numerical method is devoted to predict the turbulent interfacial dynamics resulting from either aerodynamic force or thermocapillary effects. The unsteady Reynolds averaged Navier-Stokes equations (RANS) and energy equation are coupled with the level set method and solved separately in each phase using the finite volume method on a non-staggered grid system. The application of the fast marching technique enables the fast as well… More >

  • Open Access

    ARTICLE

    Aerothermodynamic and Feasibility Study of a Deployable Aerobraking Re-Entry Capsule

    R. Savino1, V. Carandente1

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 453-476, 2012, DOI:10.3970/fdmp.2012.008.453

    Abstract A new small recoverable re-entry capsule with deployable heat shield is analyzed. The possible utilization of the capsule is for safe Earth return of science payloads or data from low Earth orbit at an inexpensive cost, taking advantage of its deployable structure to perform an aerobraking re-entry mission, with relatively low heat and mechanical loads. The system concept for the heat shield is based on umbrella-like frameworks and existing ceramic fabrics. An aerothermodynamic analysis is developed to show that the peak heat flux, for a capsule with a ballistic coefficient lower than 10 kg/m2, is in More >

  • Open Access

    ARTICLE

    Numerical Modelling of Rib Width and Surface Radiation Effect on Natural Convection in a Vertical Vented and Divided Channel

    Nadia Dihmani1, Samir Amraqui1, Ahmed Mezrhab1,2, Najib Laraqi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.3, pp. 311-322, 2012, DOI:10.3970/fdmp.2012.008.311

    Abstract Natural convection with surface radiation heat transfer is investigated numerically in a vented vertical channel heated asymmetrically. The numerical solution is obtained using a finite volume method based on the SIMPLER algorithm for the treatment of velocity-pressure coupling. Concerning the radiation exchange, in particular, the working fluid is assumed to be transparent, so that only the solid surfaces (assumed diffuse-grey) give a contribute to such exchange. The effect of Rayleigh numbers and rib width (for Pr=0.7 air fluid) on the heat transfer and flow structure in the channel is examined in detail. Results are presented More >

  • Open Access

    ARTICLE

    REDUCING HEAT TRANSFER BETWEEN TWO CONCENTRIC SEMICYLINDERS USING RADIATION SHIELDS WITH TEMPERATUREDEPENDENT EMISSIVITY

    Seyfolah Saedodin, M.S. Motaghedi Barforoush, Mohsen Torabi*

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-4, 2011, DOI:10.5098/hmt.v2.4.4001

    Abstract In this paper, a simplifying approach for calculating the radiant energy is achieved using the concept of net radiation heat transfer and provides an easy way for solving a variety of situations. This method has been applied to calculate the net radiation heat transfer between two long concentric semi-cylinders. Then this method used to calculate reduction heat transfer when radiation shields with temperature-dependent emissivity applied between these objects. Moreover, using this method the percentage reduction in heat transfer between two surfaces was calculated. The findings reveal that, one radiation shield with lower emissivity can reduce More >

  • Open Access

    ARTICLE

    SATURATED AND SUBCOOLED POOL BOILING OF HFE-7200 MIXTURES ON A COPPER NANOWIRE SURFACE

    Aravind Sathyanarayanaa, Pramod Warrierb, Yogendra Joshia,*, Amyn Tejab

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-7, 2011, DOI:10.5098/hmt.v2.4.3007

    Abstract Electrical and chemical compatibility requirements of electronic components pose significant constraints on the choice of liquid coolants. Dielectric coolants such as Novec fluids and fluoroinerts are plagued by poor thermal properties. This necessitates the development of new heat transfer fluids. In this study we examine mixture formulations that provide an avenue for enhancing the properties of existing heat transfer fluids. Mixture formulations of Novec fluid (HFE 7200) with Methanol and Ethoxybutane are considered. Pool boiling experiments are performed on a copper nanowire surface. The results show an improvement of 24% and 11% in the CHF More >

  • Open Access

    ARTICLE

    POOL BOILING CHF FOR PENTANE, HEXANE, METHANOL, FC-72, FC-87, AND R113 ON A SMOOTH HORIZONTAL SURFACE

    Cheng-Kang Guan, James F. Klausner*, Renwei Mei

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-6, 2011, DOI:10.5098/hmt.v2.4.3002

    Abstract Pool boiling critical heat flux (CHF) has been measured for pentane, hexane, methanol, FC-72, FC-87, and R113 on a 25.4 mm diameter smooth brass horizontal surface at five different reduced pressures ranging from 0.01to 0.24. The CHF data are compared with various established CHF models as well as the new mechanistic CHF lift-off model recently proposed by the authors. The dependence of CHF on pressure is examined, and it is found that the lift-off model gives a reasonably good prediction of changes in CHF with step changes in the reduced pressure. The R113 and FC-72 More >

Displaying 491-500 on page 50 of 635. Per Page