Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Effects of Different Arbuscular Mycorrhizal Fungi on Physiology of Viola prionantha under Salt Stress

    Yajie Liu, Linlin Fang, Wenna Zhao, Chunxue Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 55-69, 2023, DOI:10.32604/phyton.2022.022159 - 06 September 2022

    Abstract Arbuscular mycorrhizal (AM) fungi distribute widely in natural habits and play a variety of ecological functions. In order to test the physiological response to salt stress mediated by different AM fungi, Viola prionantha was selected as the host, the dominant AM fungus in the rhizosphere of V. philippica growing in Songnen saline-alkali grassland, Rhizophagus irregularis, and their mixtures were used as inoculants, and NaCl stress was applied after the roots were colonized. The results showed that V. philippica could be colonized by AM fungi in the field and the colonization rate ranged from 73.33% to 96.67%, and Claroideoglomus etunicatum was… More >

  • Open Access

    ARTICLE

    GhSCL4 Acts as a Positive Regulator in Both Transgenic Arabidopsis and Cotton during Salt Stress

    Yanyan Zhao1,*, Yanpeng Ding2, Bailin Duan1, Qingzhou Xie1

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 1-15, 2023, DOI:10.32604/phyton.2022.022384 - 06 September 2022

    Abstract GRAS transcription factors play important roles in plant abiotic stress response, but their characteristics and functions in cotton have not been fully investigated. A cotton SCL4/7 subgroup gene in the GRAS family, GhSCL4, was found to be induced by NaCl treatments. Nuclear localization and transactivation activity of GhSCL4 indicate its potential role in transcriptional regulation. Transgenic Arabidopsis thaliana over-expressing GhSCL4 showed enhanced resistance to salt and osmotic stress. What’s more, the transcript levels of salt stress-induced genes (AtNHX1 and AtSOS1) and oxidation-related genes (AtAPX3 and AtCSD2) were more highly induced in the GhSCL4 over-expression lines than in… More >

  • Open Access

    ARTICLE

    In vitro Evaluation of Seed Germination in Twelve Alfalfa Cultivars under Salt Stress

    Walid Soufan*, Yaser Hassan Dewir, Nasser A. Al-Suhaibani

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 111-120, 2023, DOI:10.32604/phyton.2022.023115 - 06 September 2022

    Abstract Alfalfa (Medicago sativa L.), when exposed to abiotic stress such as salinity, suffers significant losses in yield and productivity. The present study evaluated the salinity tolerance of 12 alfalfa cultivars in vitro using five concentrations of sodium chloride (NaCl), ranging from 0 to 250 mmol L−1 . The results obtained in the current study revealed that the Saudi cultivars, Kasimi and Hassawi, and the German cultivar (Berlin) had the highest salinity tolerance in terms of germination percentage (GP), corrected germination rate index (CGRI), days to reach 50% germination (GT50), and ability to form cotyledonary and true leaves. Under More >

  • Open Access

    ARTICLE

    Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on growth and reactive oxygen metabolism of tomato fruits under low saline conditions

    WEI ZHOU, MENGMENG ZHANG, KEZHANG TAO, XIANCAN ZHU*

    BIOCELL, Vol.46, No.12, pp. 2575-2582, 2022, DOI:10.32604/biocell.2022.021910 - 10 August 2022

    Abstract Land salinization is a major form of land degradation, which is not conducive to the growth and quality of fruits and vegetables. Plant salt tolerance can be enhanced by arbuscular mycorrhizal fungi (AMF) or plant growth-promoting rhizobacteria (PGPR). This study examined the effects of inoculation with PGPR singly or in combination with AMF, on the growth and quality of tomato fruits under low saline conditions. Tomatoes were cultivated in a greenhouse with sterilized soil, inoculated with PGPR, AMF, or co-inoculated with PGPR and AMF, and NaCl solution (1%) was added to the soil. The results… More >

  • Open Access

    ARTICLE

    Physiological and Biochemical Mechanisms of Exogenous Calcium Chloride on Alleviating Salt Stress in Two Tartary Buckwheat (Fagopyrum tataricum) Varieties Differing in Salinity Tolerance

    Tao Zhang*, Hongbing Yang

    Phyton-International Journal of Experimental Botany, Vol.91, No.8, pp. 1643-1658, 2022, DOI:10.32604/phyton.2022.019572 - 14 April 2022

    Abstract Salt stress is one of the most serious abiotic stresses limiting plant growth and development. Calcium as an essential nutrient element and important signaling molecule plays an important role in ameliorating the adverse effect of salinity on plants. This study aimed to investigate the impact of exogenous calcium on improving salt tolerance in Tartary buckwheat cultivars, cv. Xinong9920 (salt-tolerant) and cv. Xinong9909 (salt-sensitive). Four-week-old Tartary buckwheat seedlings under 100 mM NaCl stress were treated with and without exogenous calcium chloride (CaCl2), Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and Ca2+-channel blocker lanthanum chloride (LaCl3) for 10 days.… More >

  • Open Access

    ARTICLE

    De novo Transcriptome Analysis in Leymus mollis to Unveil Genes Involved in Salt Stress Response

    Wenting Wu1 , Yajing Zhang1, Yu Gao1, Kai Zhang2,3, Luying Zhu1,3,*, Hongxia Zhang2,3

    Phyton-International Journal of Experimental Botany, Vol.91, No.8, pp. 1629-1642, 2022, DOI:10.32604/phyton.2022.020515 - 14 April 2022

    Abstract Leymus mollis, a wild relative of wheat, is very tolerant to salt stress, and has been considered as a valuable genetic resource for wheat breeding. However, the genetic basis for salt tolerance of this species is still largely unknown. In this study, de novo sequencing, assembly and analysis of L. mollis transcriptome in response to salt stress was performed. A total of 110,323 and 112,846 unigenes were generated for the NaCl-free (CK) and 180 mM NaCl-treated (CT) library, respectively. For the two libraries, 73,414 unigenes were successfully annotated in five common protein databases, and 7521 differentially expressed genes… More >

  • Open Access

    ARTICLE

    Proline and Oxidative Metabolism in Young Pecan Trees Associated with Sulphate Accumulation

    Dalila Jacqueline Escudero-Almanza1, Oscar Cruz-Alvarez1, Ofelia Adriana Hernández-Rodríguez1, Juan Luis Jacobo-Cuellar1, Esteban Sánchez-Chávez2, Pablo Preciado-Rángel3, Dámaris Leopoldina Ojeda-Barrios1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.6, pp. 1141-1152, 2022, DOI:10.32604/phyton.2022.019129 - 14 February 2022

    Abstract Pecan [Carya illinoinensis (Wangenh.) K. Koch.] is a deciduous tree whose fruits (nuts) are of high economic value and offer excellent nutritional benefits. However, soils high in sulphates can limit its growth and development. Working with 5-year-old trees of ‘Western Schley’ pecan grown in soils high in sulphates, the levels of proline and oxidative metabolism were recorded in the leaflets. Results showed that different levels of visible leaflet damage (‘sufficiency’, ‘low’, ‘moderate’ or ‘severe’) were associated with different levels of leaflet sulphates (mg kg−1): ‘sufficiency’ (≤40), ‘low’ (41–60), ‘moderate’ (61–80) and ‘severe’ (80–100). ‘Severe’ sulphate damage was… More >

  • Open Access

    ARTICLE

    Changes in Growth, Photosynthetic Pigments, Cell Viability, Lipid Peroxidation and Antioxidant Defense System in Two Varieties of Chickpea (Cicer arietinum L.) Subjected to Salinity Stress

    Zeenat Mushtaq1, Shahla Faizan1, Basit Gulzar2, Humira Mushtaq3, Sayyada Bushra1, Alisha Hussain1, Khalid Rehman Hakeem4,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.1, pp. 149-168, 2022, DOI:10.32604/phyton.2022.016231 - 16 August 2021

    Abstract Salinity is one of the most severe abiotic stresses for crop production. The present study investigates the salinity-induced modulation in growth indicators, morphology and movement of stomata, photosynthetic pigments, activity of carbonic anhydrase as well as nitrate reductase, and antioxidant systems in two varieties of chickpea (Pusa-BG5023, and Pusa-BGD72). On 20th day of sowing, plants were treated with varying levels of NaCl (0, 50, 100, 150 and 200 mM) followed by sampling on 45 days of sowing. Recorded observations on both the varieties reveal that salt stress leads to a significant decline in growth, dry biomass,… More >

  • Open Access

    ARTICLE

    Cloning and Bioinformatics Analysis of the GlROP6 gene in Glehnia littoralis

    Min Yan1, Han Wang1, Shaohua Liu1, Ye Xu1, Zizhuo Nie1, Yifeng Zhou2, Li Li2,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.4, pp. 1293-1300, 2021, DOI:10.32604/phyton.2021.015601 - 27 April 2021

    Abstract Rho-related GTPase from plants (ROP) proteins play an essential role in plant stress resistance. In this study, the full-length GlROP6 gene was cloned based on G. littoralis transcriptome sequencing data acquired in response to salt stress. The protein sequence, conserved domains, secondary structure, three-dimensional structure, phylogenetic relationships, and expression pattern of the GlROP6 gene were systematically analysed. Our results showed that the full-length GlROP6 gene had an open reading frame of 606 bp, which encoded 201 amino acid residues with a relative molecular weight of 22.23463 kDa and a theoretical isoelectric point of 9.06. Amino acid sequence analyses… More >

  • Open Access

    ARTICLE

    Overexpression of rice F-box phloem protein gene OsPP12-A13 confers salinity tolerance in Arabidopsis

    CHUNKUN FAN, YONGPENG ZHANG, CHUNBAO YANG, YAWEI TANG, JI QU, BU JIE, DEJI QUZHEN, LIYUN GAO*

    BIOCELL, Vol.45, No.4, pp. 1121-1135, 2021, DOI:10.32604/biocell.2021.014336 - 22 April 2021

    Abstract Salinity is a serious challenge for agriculture production by limiting the arable land. Rice is a major staple food crop but very sensitive to salt stress. In this study, we used Arabidopsis for the functional characterization of a rice F-box gene LOC_Os04g48270 (OsPP12-A13) under salinity stress. OsPP12-A13 is a nuclear-localized protein that is strongly upregulated under salinity stress in rice and showed the highest expression in the stem, followed by roots and leaves. Two types of transgenic lines for OsPP12-A13 were generated, including constitutive tissue over-expression using the CaMV35S promoter and phloem specific over-expression using the pSUC2 promoter.… More >

Displaying 21-30 on page 3 of 40. Per Page