Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

    Tianen Liu1,2, Kun Dai1,2, Shiju Ren1,2, Chuanxiang Zhang1,2, Xiaoling Tang3,*, Jinghong Hu3,*, Yidong Cai3, Jun Lu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2981-2995, 2025, DOI:10.32604/fdmp.2025.073859 - 31 December 2025

    Abstract Many mature onshore oilfields have entered a high-water-cut stage, with reservoir recovery approaching economic limits. Converting these depleted or nearly depleted reservoirs into underground gas storage (UGS) facilities offers an efficient way to leverage their substantial storage potential. During cyclic gas injection and withdrawal, however, the reservoir experiences complex three-phase flow and repeated stress fluctuations, which can induce rock fatigue, inelastic deformation, and ultimately sand production. This study uses controlled physical experiments to simulate sand production in reservoir rocks subjected to alternating gas injection and production under three-phase conditions. After preparing oil-water-saturated cores through waterflooding,… More > Graphic Abstract

    Sand Production in Unconsolidated Sandstone: Experimental Analysis of Multiphase Flow During Cyclic Injection and Production

  • Open Access

    REVIEW

    Enhanced Oil Recovery in Sandstone Reservoirs: A Review of Mechanistic Advances and Hydrocarbon Predictive Techniques

    Surajudeen Sikiru1,2,*, Jemilat Yetunde Yusuf 3, Hassan Soleimani4, Niraj Kumar5, Zia ur Rehman6, Bonnia N N1,*

    Energy Engineering, Vol.122, No.10, pp. 3917-3960, 2025, DOI:10.32604/ee.2025.067815 - 30 September 2025

    Abstract Enhanced oil recovery (EOR) refers to the many methodologies used to augment the volume of crude oil extracted from an oil reservoir. These approaches are used subsequent to the exhaustion of basic and secondary recovery methods. There are three primary categories of Enhanced Oil Recovery (EOR): thermal, gas injection, and chemical. Enhanced oil recovery methods may be costly and intricate; yet, they facilitate the extraction of supplementary oil that would otherwise remain in the reservoir. Enhanced Oil Recovery (EOR) may prolong the lifespan of an oil field and augment the total output from a specific… More >

  • Open Access

    PROCEEDINGS

    Research on the Vertical Fracture Propagation Behavior of Deep Offshore Sandstone Reservoirs

    Weishuai Zhang, Fengjiao Wang, Yikun Liu*, Yilin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010789

    Abstract The mechanism of vertical extension in high-volume hydraulic fracturing is of significant importance for the volumetric transformation of low-permeability reservoirs in deep offshore sandstone formations. The complexity of fracture propagation behavior is influenced by the characteristics of discontinuous thin layers in the vertical plane. However, the mechanisms and influencing factors of fracture extension in the vertical direction during high-volume hydraulic fracturing remain unclear. This study integrates true triaxial hydraulic fracturing experiments with acoustic emission (AE) monitoring, employing a nonlinear finite element method to establish a multi-thin interlayer fracturing model based on seepage-stress-damage coupling. It investigates… More >

  • Open Access

    ARTICLE

    Water Huff-n-Puff Optimization in High Saturation Tight Oil Reservoirs

    Zhengyang Zhang1,2, Jing Sun1,2,*, Xin Shi3, Dehua Liu1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 509-527, 2025, DOI:10.32604/fdmp.2025.060393 - 01 April 2025

    Abstract High saturation pressure reservoirs experience rapid pressure decline during exploitation, leading to significant changes in crude oil phase behavior and a continuous increase in viscosity after degassing, which adversely affects oil recovery. This challenge is particularly acute in tight sandstone reservoirs. To optimize the development strategy for such reservoirs, a series of experiments were conducted using core samples from a high saturation tight sandstone reservoir in the JS oilfield. Gas-dissolved crude oil was prepared by mixing wellhead oil and gas samples, enabling the identification of the critical point where viscosity changes as pressure decreases. Oil-water… More >

  • Open Access

    ARTICLE

    Characterization of Pore Structure and Simulation of Pore-Scale Flow in Tight Sandstone Reservoirs

    Min Feng*, Long Wang, Lei Sun, Bo Yang, Wei Wang, Jianning Luo, Yan Wang, Ping Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 573-587, 2025, DOI:10.32604/fdmp.2024.056421 - 01 April 2025

    Abstract This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs, with a particular focus on the Paleozoic reservoirs in the Qingshimao Gas Field. Using CT scans of natural core samples, a three-dimensional digital core was constructed. The maximum ball method was applied to extract a related pore network model, and the pore structure characteristics of the core samples, such as pore radius, throat radius, pore volume, and coordination number, were quantitatively evaluated. The analysis revealed a normally distributed pore radius, suggesting a high degree… More >

  • Open Access

    ARTICLE

    Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions

    Yan Liu1, Tianli Sun2, Bencheng Wang1,*, Yan Feng2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1165-1180, 2024, DOI:10.32604/fdmp.2023.041852 - 27 June 2024

    Abstract A numerical model of hydraulic fracture propagation is introduced for a representative reservoir (Yuanba continental tight sandstone gas reservoir in Northeast Sichuan). Different parameters are considered, i.e., the interlayer stress difference, the fracturing discharge rate and the fracturing fluid viscosity. The results show that these factors affect the gas and water production by influencing the fracture size. The interlayer stress difference can effectively control the fracture height. The greater the stress difference, the smaller the dimensionless reconstruction volume of the reservoir, while the flowback rate and gas production are lower. A large displacement fracturing construction More >

  • Open Access

    ARTICLE

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

    Fang Li1,*, Juan Wu1, Haiyong Yi2, Lihong Wu2, Lingyun Du1, Yuan Zeng1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1015-1030, 2024, DOI:10.32604/fdmp.2023.043256 - 07 June 2024

    Abstract Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors, such as strong reservoir heterogeneity and seepage mechanisms. In this study, the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments. On the basis of these experiments, a numerical simulation model (based on the special seepage mechanism) and an inverse dynamic reserve algorithm (with different equivalent drainage areas) were developed. The well spacing ranges of Classes I, II, and III wells in the Q gas More > Graphic Abstract

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

  • Open Access

    ARTICLE

    A Data-Oriented Method to Optimize Hydraulic Fracturing Parameters of Tight Sandstone Reservoirs

    Zhengrong Chen*, Mao Jiang, Chuanzhi Ai, Jianshu Wu, Xin Xie

    Energy Engineering, Vol.121, No.6, pp. 1657-1669, 2024, DOI:10.32604/ee.2024.030222 - 21 May 2024

    Abstract Based on the actual data collected from the tight sandstone development zone, correlation analysis using the Spearman method was conducted to determine the main factors influencing the gas production rate of tight sandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracture propagation and production was completed. Based on data analysis, the hydraulic fracture parameters were optimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influence of geological and engineering factors in the X1 and X2 development zones in the study area differs significantly. Therefore, it is… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Fracturing Behaviors after Liquid Nitrogen Pre-Injection in High-Temperature Sandstone

    Decheng Li1, Yan Zhang2, Dongdong Ma2, Haozhe Geng1, Yu Wu1,2,*

    Energy Engineering, Vol.120, No.11, pp. 2503-2516, 2023, DOI:10.32604/ee.2023.041803 - 31 October 2023

    Abstract The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability. Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks, effectively reducing fracture pressure and establishing intricate fracture networks, thus offering a potential solution for reservoir reconstruction. To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection, sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection, rock temperature, and in-situ stress conditions. The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions, complemented by… More >

  • Open Access

    PROCEEDINGS

    Spontaneous Imbibition Considering Fractal Theory and Dynamic Contact Angle in Tight Sandstone

    Jingjing Ping1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.08787

    Abstract In the process of tight oil reservoir development, there are a lot of spontaneous imbibition phenomena which are beneficial to achieving the purpose of enhancing oil recovery. It is of great significance to study the law of spontaneous imbibition of oil and water at the pore scale of tight sandstone. In this paper, we study the law of spontaneous imbibition at the pore scale of tight sandstone by combining theoretical research and numerical simulation. Based on the fractal theory and the capillary bundle model, we establish a mathematical model of spontaneous imbibition in porous media More >

Displaying 1-10 on page 1 of 15. Per Page