Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

  • Open Access

    PROCEEDINGS

    Refined Microstructures and Enhanced Strength of In-Situ TiBw/Ti-6.5Al-2.5Zr-1Mo-1V Composites by Selective Laser Melting

    Qi An1,*, Lihua Cui1, Lujun Huang1, Lin Geng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011973

    Abstract Ti-6.5Al-2.5Zr-1Mo-1V alloy is a near α titanium alloy, which has been widely used in aerospace fields due to its low density, high specific strength, good corrosion resistance and high-temperature durability. To further improve the strength and high-temperature durability of Ti-6.5Al-2.5Zr-1Mo-1V complex components, the spherical Ti-6.5Al-2.5Zr-1Mo-1V alloy powder with a particle size of 15~53 μm and TiB2 powder with a particle size of 0.5~1 μm were used to fabricate in-situ TiBw reinforced Ti-6.5Al-2.5Zr-1Mo-1V composites through low energy ball milling and selective laser melting (SLM). The results show that the TiB whiskers are uniformly distributed in the More >

  • Open Access

    PROCEEDINGS

    Micro-and Meso-Structures of Ti-6Al-4V Formed by SLM Process and Its Formation Mechanism

    Lixiang Dang1, Yanwen Zeng1, Wei Duan1,*, Yan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012173

    Abstract In order to regulate the multi-scale structure of Ti-6Al-4V formed by the SLM (selective laser melting) process, this study uses the method of combining numerical simulations with experiments to investigate the effects of SLM process parameters on the phase composition, micro- and meso-structures, and their distribution of Ti-6Al-4V. The study shows that the SLM-formed Ti-6Al-4V is mainly composed of α/α' phases. Horizontally, the specimens at a 0° phase angle mainly show a striped pattern, while the specimens at 67° and 90° phase angles will show a tessellated pattern. Vertically, the specimens at 0°, 67°, and More >

  • Open Access

    ARTICLE

    Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite: Multiscale Design and Experimental Verification

    Xiaoyu Zhang1,2, Huizhong Zeng2, Shaohui Zhang2, Yan Zhang3,*, Mi Xiao4, Liping Liu2, Hao Zhou2,*, Hongyou Chai2, Liang Gao4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 201-220, 2024, DOI:10.32604/cmes.2023.029389 - 22 September 2023

    Abstract Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting from the sandwich effect. Such structures can be fabricated by metallic additive manufacturing technique, such as selective laser melting (SLM). However, the maximum dimensions of actual structures are usually in a sub-meter scale, which results in restrictions on their appliance in aerospace and other fields. In this work, a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness More >

  • Open Access

    ARTICLE

    Prediction of Melt Pool Dimension and Residual Stress Evolution with Thermodynamically-Consistent Phase Field and Consolidation Models during Re-Melting Process of SLM

    Kang-Hyun Lee1, Gun Jin Yun1,2,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 87-112, 2021, DOI:10.32604/cmc.2020.012688 - 30 October 2020

    Abstract Re-melting process has been utilized to mitigate the residual stress level in the selective laser melting (SLM) process in recent years. However, the complex consolidation mechanism of powder and the different material behavior after the first laser melting hinder the direct implementation of the re-melting process. In this work, the effects of re-melting on the temperature and residual stress evolution in the SLM process are investigated using a thermo-mechanically coupled finite element model. The degree of consolidation is incorporated in the energy balance equation based on the thermodynamically-consistent phase-field approach. The drastic change of material… More >

  • Open Access

    ARTICLE

    Periodic Lattice Porous Structure Produced by Selective Laser Melting: Process, Experiment and Numerical Simulation Analysis

    Jianrui Zhang1,2, Min Chi1, Bo Qian1,*, Zhijun Qiu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 77-94, 2020, DOI:10.32604/cmes.2020.010518 - 18 September 2020

    Abstract To accurately perform the coupled simulation of temperature field and stress field of complex parts and porous structures under the optimal manufacturing process parameters, three kinds of porous structures with different complexity were designed in this paper. Firstly, ANSYS additive software was used to conduct the stress/deformation simulation of the whole structure under different scanning strategies. Secondly, the optimal scanning strategy for different porous structures was determined, then the experimental preparation was performed, and mechanical properties of compression were tested and studied. The results show that the elastic modulus and yield strength increase with the More >

  • Open Access

    ARTICLE

    Design and Manufacture of Bionic Porous Titanium Alloy Spinal Implant Based on Selective Laser Melting (SLM)

    Xiaojun Chen1, Di Wang1,*, Wenhao Dou1, Yimeng Wang1, Yongqiang Yang1, Jianhua Wang2, Jie Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1099-1117, 2020, DOI:10.32604/cmes.2020.09619 - 21 August 2020

    Abstract In order to meet the clinical requirements of spine surgery, this paper proposed the exploratory research of computer-aided design and selective laser melting (SLM) fabrication of a bionic porous titanium spine implant. The structural design of the spinal implant is based on CT scanning data to ensure correct matching, and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment. The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15 μm, and the implant is precisely jointed with the photosensitive resin model of the… More >

  • Open Access

    ARTICLE

    Thermodynamics of Molten Pool Predicted by Computational Fluid Dynamics in Selective Laser Melting of Ti6Al4V: Surface Morphology Evolution and Densification Behavior

    Donghua Dai1,2, Dongdong Gu1,2,*, Qing Ge1,2, Chenglong Ma1,2, Xinyu Shi1,2, Han Zhang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1085-1098, 2020, DOI:10.32604/cmes.2020.010927 - 21 August 2020

    Abstract The three-dimensional physical model of the randomly packed powder material irradiated by the laser beam was established, taking into account the transformation of the material phase, the melt spreading and the interaction of the free surface of the molten pool and the recoiling pressure caused by the material evaporation during the selective laser melting. Influence of the processing parameters on the thermal behavior, the material evaporation, the surface morphology and the densification behavior in the connection region of the molten pool and the substrate was studied. It was shown that the powder material underwent the… More >

  • Open Access

    ARTICLE

    Investigation into Spatter Particles and Their Effect on the Formation Quality During Selective Laser Melting Processes

    Zhiqiang Wang1, Xuede Wang1, Xin Zhou1,*, Guangzhao Ye2, Xing Cheng1,3, Peiyu Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 243-263, 2020, DOI:10.32604/cmes.2020.09934 - 19 June 2020

    Abstract During the selective laser melting process, a high-energy laser beam acts on the powder, a molten pool is rapidly generated and the characteristic parameters are constantly changing. Among them, temperature is one of the important parameters in the forming process. Due to the generation of splash particles, there will be defects in the microstructure, which will seriously affect the formation quality of the prepared parts. Therefore, it is necessary to study the relationships between the splash behavior, molten pool characteristics and product quality. The finite element simulation of the transient temperature field was performed by… More >

  • Open Access

    ARTICLE

    Novel Micromixer with Complex 3D-Shape Inner Units: Design, Simulation and Additive Manufacturing

    Di Wang1, Guangzhao Ye1, Jingming Mai2, Xiaomin Chen1, Yongqiang Yang1,*, Yang Li1,*, Xiaojun Chen1, Jie Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1061-1077, 2020, DOI:10.32604/cmes.2020.09842 - 28 May 2020

    Abstract In this paper, a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing (AM). The design of the micromixer combined the constraints of selective laser melting technology and the factors to improve mixing efficiency. Villermaux-Dushman reaction system and Compute Fluid Design (CFD) simulation were conducted to investigate the performance and the mechanism of this novel micromixer to improve mixing efficiency. The research found that the best mixing efficiency of this novel micromixer could be gained when the inner units divided fluid into five pieces with a uniform volume.… More >

Displaying 1-10 on page 1 of 11. Per Page