Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Wellbore Cleaning Degree and Hydraulic Extension in Shale Oil Horizontal Wells

    Xin Ai1,2,*, Mian Chen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 661-670, 2024, DOI:10.32604/fdmp.2023.026819


    The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degree of cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentally by focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontal-well hydraulic extension taking into account the influence of the wellbore cleaning degree on the wellbore pressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulating pressure drop, the drilling pump performance and the formation properties. The analysis shows that… More >

  • Open Access


    A Cementing Technology for Shale Oil Horizontal Wells

    Yudong Tian1,2, Gonghui Liu1, Yue Qi1,2,*, Jun Li1,3, Yan Xi1,4, Wei Lian1,3, Xiaojie Bai2, Penglin Liu1, Xiaoguang Geng2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2837-2845, 2023, DOI:10.32604/fdmp.2023.028805

    Abstract Organic rich dark shale of Q Formation can be found in many areas (e.g., in the North of S Basin). The shale target stratum is easy to hydrate and often undergoes spallation. Therefore, centering the casing in the horizontal section of the irregular borehole is relatively difficult. Similarly, achieving a good cement flushing efficiency under complex borehole conditions is a complex task. Through technologies such as centralizer, efficient preflushing, multi-stage flushing and ductile cement slurry, better performances can be achieved. In this study, it is shown that the cementing rate in the DY2H horizontal section is 97.8%, which is more… More >

  • Open Access


    Simulation of Oil-Water Flow in Shale Oil Reservoirs Based on Smooth Particle Hydrodynamics

    Qin Qian1, Mingjing Lu1,2,*, Feng Wang3, Aishan Li1, Liaoyuan Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1089-1097, 2022, DOI:10.32604/fdmp.2022.019837

    Abstract A Smooth Particle Hydrodynamics (SPH) method is employed to simulate the two-phase flow of oil and water in a reservoir. It is shown that, in comparison to the classical finite difference approach, this method is more stable and effective at capturing the complex evolution of this category of two-phase flows. The influence of several smooth functions is explored and it is concluded that the Gaussian function is the best one. After 200 days, the block water cutoff for the Gaussian function is 0.3, whereas the other functions have a block water cutoff of 0.8. The effect of various injection ratios… More >

Displaying 1-10 on page 1 of 3. Per Page