Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    Comparative Thermal Performance in SiO2–H2O and (MoS2–SiO2)–H2O Over a Curved Stretching Semi-Infinite Region: A Numerical Investigation

    Basharat Ullah1, Umar Khan1, Hafiz Abdul Wahab1, Ilyas Khan2,*, Dumitru Baleanu3,4,5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 947-960, 2021, DOI:10.32604/cmc.2020.012430 - 30 October 2020

    Abstract The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry. Therefore, the comparative thermal analysis in SiO2–H2O and (MoS2–SiO2)–H2O is conducted over curved stretching surface. The model is reduced in the dimensional version via similarity transformation and then treated numerically. The velocity and thermal behavior for both the fluids is decorated against the preeminent parameters. From the analysis, it is examined that the motion of under consideration fluids declines against Fr and λ. The thermal performance enhances for higher volumetric fraction and λ. More >

  • Open Access

    REVIEW

    The roles of focal adhesion and cytoskeleton systems in fluid shear stress-induced endothelial cell response

    KHAWAR ALI SHAHZAD1,2,#, ZHONGJIE QIN3,4,#, YAN LI1,2,*, DELIN XIA3,4,*

    BIOCELL, Vol.44, No.2, pp. 137-145, 2020, DOI:10.32604/biocell.2020.08500 - 27 May 2020

    Abstract Focal adhesions are polyproteins linked to extracellular matrix and cytoskeleton, which play an important role in the process of transforming force signals into intracellular chemical signals and subsequently triggering related physiological or pathological reactions. The cytoskeleton is a network of protein fibers in the cytoplasm, which is composed of microfilaments, microtubules, intermediate filaments, and cross-linked proteins. It is a very important structure for cells to maintain their basic morphology. This review summarizes the process of fluid shear stress transduction mediated by focal adhesion and the key role of the cytoskeleton in this process, which focuses More >

  • Open Access

    ABSTRACT

    The Rate of Fluid Shear Stress is a Potent Regulator for Lineage Commitment of Mesenchymal Stem Cells Through Modulating [Ca2+]i, F-actin and Lamin A

    Danyang Yue1, Yijuan Fan1, Juan Lu1, Mengxue Zhang1, Jin Zhou1, Yuying Bai1, Jun Pan1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 144-144, 2019, DOI:10.32604/mcb.2019.07084

    Abstract Mesenchymal Stem Cells (MSCs) are recruited to the musculoskeletal system following trauma [1] or chemicals stimulation [2]. The regulation of their differentiation into either bone or cartilage cells is a key question. The fluid shear stress (FSS) is of pivotal importance to the development, function and even the repair of all tissues in the musculoskeletal system [3]. We previously found that MSCs are sensitive enough to distinguish a slight change of FSS stimulation during their differentiation commitment to bone or cartilage cells, and the internal mechanisms. In detail, MSCs were exposed to laminar FSS linearly… More >

  • Open Access

    ABSTRACT

    Oscillatory Shear Stress Induces Endothelial Dysfunction through the Activation of P2Y12

    Jianxiong Xu1, Lu Wang1, Jinxuan Wang1, Juhui Qiu1,*, Guixue Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 142-142, 2019, DOI:10.32604/mcb.2019.07273

    Abstract Endothelial cell injured or dysfunction, which results lipid deposition and inflammation, is the key point to exacerbate the process of atherosclerosis [1, 2]. Meanwhile oscillatory shear stress is a key factor that results cell dysfunction in vascular disease [3, 4]. Previous research reported that P2Y12 plays a critical role in the development of atherosclerotic lesion through promoting smooth muscle cells migration [5]. As well P2Y12 stimulated the internalization and transendothelial transport of high density lipid. However, whether the P2Y12 induce atherosclerosis through endothelial cell remain elusive. In this study we firstly found P2Y12 were expressed… More >

  • Open Access

    ABSTRACT

    Atypical Activation of Endogenous Piezo1 Channels by Shear Stress in Endothelial Cells

    Jian Shi1,*, Baptiste Rode1, David Beech1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 98-98, 2019, DOI:10.32604/mcb.2019.06939

    Abstract The sensing of blood flow-evoked shear stress is critical in vascular development and maintenance of a healthy vasculature in the adult [1,2]. The identity of molecules which sense and transduce this force into appropriate vascular anatomy and function is therefore keenly sought. A central question is whether there is a force sensor protein (“receptor”) which directly detects the force, acting either alone or in complex with other proteins. Piezo1 channels are Ca2+-permeable non-selective cationic channels which are activated by membrane stretch. These channels are important for shear stress-sensing and vascular function in embryonic and adult mice.… More >

  • Open Access

    ABSTRACT

    Mass Transport of LDL in Stenotic Right Coronary Arteries

    Biyue Liu1,*, Dalin Tang2

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 25-26, 2019, DOI:10.32604/mcb.2019.06825

    Abstract The blood flow and mass transport pattern of low-density lipoprotein (LDL) in a right coronary artery with two stenoses are studied. Computations were carried out under physiological conditions. Our results show a strong correlation between wall shear stress (WSS) and distribution patterns of LDL. More >

  • Open Access

    ABSTRACT

    Impact of Plaque Erosion on Stress/Strain and Flow Shear Stress Calculation: An OCT-Based FSI Modeling Study

    Liang Wang1, Haibo Jia2, Luping He2, Rui Lv1, Xiaoya Guo3, Chun Yang4,5, Don P. Giddens6,7, Habib Samady6, Akiko Maehara8, Gary S. Mintz8, Dalin Tang1,*,5

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 23-24, 2019, DOI:10.32604/mcb.2019.07522

    Abstract Plaque erosion, one of the primary causes for coronary thrombosis, is responsible for about one third of the patients with acute coronary syndrome (ACS) [1]. Histological studies characterized the eroded plaque as a plaque with following morphological features: 1) plaque intima having direct contact with intraluminal thrombus due to the absence of endothelium or endothelial injury; 2) without rupture in the fibrous cap; 3) abundance of proteoglycans and smooth muscle cells on the luminal surface under the thrombus [2]. These characteristics has been applied in in vivo diagnosis of plaque erosion using optical coherence tomography… More >

  • Open Access

    ABSTRACT

    The Role of P53 in Transdifferentiation of EPCs into Smooth Muscle Cells Induced by Oscillatory Shear Stress

    Yu Gao1, Meiyue Wang1, Yanting He1, Lanlan Li1, Xiaodong Cui1, Min Cheng1,*, Xiaoyun Zhang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 93-93, 2019, DOI:10.32604/mcb.2019.05758

    Abstract This study examines the effects of P53 in transdifferentiation of endothelial progenitor cells (EPCs) into smooth muscle cells induced by oscillatory shear stress. Endothelial progenitor cells (EPCs) were planted on slide and treated with 4 dyne/cm2 oscillatory shear stress (OSS). Results showed that the expression P53 was decreased time dependent after OSS. The OSS also attenuated the endothelial cells marker vWF and CD31 expression but enhanced the marker of smooth muscle cell α-SMA and SM22 expression in EPCs. After EPCs were pretreated with P53 agonist, the changes of angiogenesis in vitro were detected by matrix More >

  • Open Access

    ABSTRACT

    The Role of Autophagy in the Differentiation of EPCs Induced by Shear Stress

    Xiumei Guan1, Hong Li1, Xin Li1, Xiaoyun Zhang1, Xiaodong Cui1, Hong Yan1, Yuzhen Wang2, Shunmei Liu2, Min Cheng3,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 91-91, 2019, DOI:10.32604/mcb.2019.05755

    Abstract Aims: Endothelial progenitor cells (EPCs) play an important role in postnatal angiogenesis and neovascularization. Previous studies have revealed shear stress could accelerate EPC proliferation, differentiation, migration and so on, which contribute to postnatal angiogenesis and neovascularization. Moreover, some studies indicate that autophagy actively participates angiogenesis by affecting EPC migration and differentiation. Here, we try to elucidate the possible roles of autophagy of EPC differentiation induced by shear stress. Methods and Results: EPCs were exposed to shear stress (12 dyne/cm2). And then the expression of autophagy markers, such as LC3Ⅱ/Ⅰ, P62andATG5, were analyzed using Western blot. The results… More >

  • Open Access

    ABSTRACT

    High Glucose Reduces the Shear Stress-Induced CD59 Expression on EPCs through F-Actin Alteration

    Na Liu1, Xiaoyun Zhang2, Yuzhen Ding2, Hong Li2, Xiumei Guan2, Min Cheng2,*, Xiaodong Cui2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 87-87, 2019, DOI:10.32604/mcb.2019.05751

    Abstract Objective: Endothelial progenitor cells (EPCs) play a vital role in postnatal vascular injury and repair, especially vasculogenesis and angiogenesis. The purpose of this study was to investigate the effect of laminar shear stress in attenuating the decreased-expression of complement regulatory protein CD59 and the mechanism of cytoskeleton F-actin. Methods: EPCs were isolated from human umbilical vein blood and planted on glass slides, which applied to the laminar shear stress force (12 dyne/cm2) in a high glucose (20 mM) culture environment. The gene and protein expression of CD59 were detected by SYBGreen quantitative PCR and fluorescence activated… More >

Displaying 11-20 on page 2 of 47. Per Page