Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Short-Term Wind Power Forecast Based on STL-IAOA-iTransformer Algorithm: A Case Study in Northwest China

    Zhaowei Yang1, Bo Yang2,*, Wenqi Liu1, Miwei Li2, Jiarong Wang2, Lin Jiang3, Yiyan Sang4, Zhenning Pan5

    Energy Engineering, Vol.122, No.2, pp. 405-430, 2025, DOI:10.32604/ee.2025.059515 - 31 January 2025

    Abstract Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids. Although numerous studies have employed various methods to forecast wind power, there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction. To improve the accuracy of short-term wind power forecast, this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer, which is based on seasonal and trend decomposition using LOESS (STL) and iTransformer model optimized by improved arithmetic optimization algorithm (IAOA).… More >

Displaying 1-10 on page 1 of 1. Per Page