Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features

    Ghadah Naif Alwakid1, Samabia Tehsin2,*, Mamoona Humayun3,*, Asad Farooq2, Ibrahim Alrashdi1, Amjad Alsirhani1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069162 - 10 November 2025

    Abstract Skin diseases affect millions worldwide. Early detection is key to preventing disfigurement, lifelong disability, or death. Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance, and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks (CNNs). We frame skin lesion recognition as graph-based reasoning and, to ensure fair evaluation and avoid data leakage, adopt a strict lesion-level partitioning strategy. Each image is first over-segmented using SLIC (Simple Linear Iterative Clustering) to produce perceptually homogeneous superpixels. These superpixels form the nodes of a region-adjacency graph whose edges encode… More >

  • Open Access

    ARTICLE

    Advancing Radiological Dermatology with an Optimized Ensemble Deep Learning Model for Skin Lesion Classification

    Adeel Akram1, Tallha Akram2, Ghada Atteia3,*, Ayman Qahmash4, Sultan Alanazi5, Faisal Mohammad Alotaibi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2311-2337, 2025, DOI:10.32604/cmes.2025.069697 - 26 November 2025

    Abstract Advancements in radiation-based imaging and computational intelligence have significantly improved medical diagnostics, particularly in dermatology. This study presents an ensemble-based skin lesion classification framework that integrates deep neural networks (DNNs) with transfer learning, a customized DNN, and an optimized self-learning binary differential evolution (SLBDE) algorithm for feature selection and fusion. Leveraging computational techniques alongside medical imaging modalities, the proposed framework extracts and fuses discriminative features from multiple pre-trained models to improve classification robustness. The methodology is evaluated on benchmark datasets, including ISIC 2017 and the Argentina Skin Lesion dataset, demonstrating superior accuracy, precision, and F1-score… More >

  • Open Access

    ARTICLE

    HybridFusionNet with Explanability: A Novel Explainable Deep Learning-Based Hybrid Framework for Enhanced Skin Lesion Classification Using Dermoscopic Images

    Mohamed Hammad1,2,*, Mohammed ElAffendi1, Souham Meshoul3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1055-1086, 2025, DOI:10.32604/cmes.2025.072650 - 30 October 2025

    Abstract Skin cancer is among the most common malignancies worldwide, but its mortality burden is largely driven by aggressive subtypes such as melanoma, with outcomes varying across regions and healthcare settings. These variations emphasize the importance of reliable diagnostic technologies that support clinicians in detecting skin malignancies with higher accuracy. Traditional diagnostic methods often rely on subjective visual assessments, which can lead to misdiagnosis. This study addresses these challenges by developing HybridFusionNet, a novel model that integrates Convolutional Neural Networks (CNN) with 1D feature extraction techniques to enhance diagnostic accuracy. Utilizing two extensive datasets, BCN20000 and… More >

  • Open Access

    ARTICLE

    Enhanced Cutaneous Melanoma Segmentation in Dermoscopic Images Using a Dual U-Net Framework with Multi-Path Convolution Block Attention Module and SE-Res-Conv

    Kun Lan1, Feiyang Gao1, Xiaoliang Jiang1,*, Jianzhen Cheng2,*, Simon Fong3

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4805-4824, 2025, DOI:10.32604/cmc.2025.065864 - 30 July 2025

    Abstract With the continuous development of artificial intelligence and machine learning techniques, there have been effective methods supporting the work of dermatologist in the field of skin cancer detection. However, object significant challenges have been presented in accurately segmenting melanomas in dermoscopic images due to the objects that could interfere human observations, such as bubbles and scales. To address these challenges, we propose a dual U-Net network framework for skin melanoma segmentation. In our proposed architecture, we introduce several innovative components that aim to enhance the performance and capabilities of the traditional U-Net. First, we establish… More >

  • Open Access

    ARTICLE

    BioSkinNet: A Bio-Inspired Feature-Selection Framework for Skin Lesion Classification

    Tallha Akram1,*, Fahdah Almarshad1, Anas Alsuhaibani1, Syed Rameez Naqvi2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2333-2359, 2025, DOI:10.32604/cmes.2025.064079 - 30 May 2025

    Abstract Melanoma is the deadliest form of skin cancer, with an increasing incidence over recent years. Over the past decade, researchers have recognized the potential of computer vision algorithms to aid in the early diagnosis of melanoma. As a result, a number of works have been dedicated to developing efficient machine learning models for its accurate classification; still, there remains a large window for improvement necessitating further research efforts. Limitations of the existing methods include lower accuracy and high computational complexity, which may be addressed by identifying and selecting the most discriminative features to improve classification… More >

  • Open Access

    ARTICLE

    xCViT: Improved Vision Transformer Network with Fusion of CNN and Xception for Skin Disease Recognition with Explainable AI

    Armughan Ali1,2, Hooria Shahbaz2, Robertas Damaševičius3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1367-1398, 2025, DOI:10.32604/cmc.2025.059301 - 26 March 2025

    Abstract Skin cancer is the most prevalent cancer globally, primarily due to extensive exposure to Ultraviolet (UV) radiation. Early identification of skin cancer enhances the likelihood of effective treatment, as delays may lead to severe tumor advancement. This study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis, with an architecture that integrates a Vision Transformer, a bespoke convolutional neural network (CNN), and an Xception module. They were evaluated using two benchmark datasets, HAM10000 and Skin Cancer ISIC. On the HAM10000, the model achieves a precision of 95.46%, an… More >

  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis

    Kun Liu1, Chen Bao1,*, Sidong Liu2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4451-4468, 2025, DOI:10.32604/cmc.2024.059053 - 06 March 2025

    Abstract Large amounts of labeled data are usually needed for training deep neural networks in medical image studies, particularly in medical image classification. However, in the field of semi-supervised medical image analysis, labeled data is very scarce due to patient privacy concerns. For researchers, obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding. In addition, skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions. In this paper, we propose a model called Coalition Sample Relation Consistency (CSRC),… More >

  • Open Access

    CORRECTION

    Correction: A Lightweight Approach for Skin Lesion Detection through Optimal Features Fusion

    Khadija Manzoor1, Fiaz Majeed2, Ansar Siddique2, Talha Meraj3, Hafiz Tayyab Rauf4,*, Mohammed A. El-Meligy5, Mohamed Sharaf6, Abd Elatty E.Abd Elgawad6

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1459-1459, 2025, DOI:10.32604/cmc.2024.061588 - 03 January 2025

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Effects of Exendin-4 on diabetic wounds: Direct action on proliferative phase of wound healing

    VIRGINIA LOTTI1, GAETANO DE SIENA2, STEFANO BACCI3,*

    BIOCELL, Vol.48, No.12, pp. 1751-1759, 2024, DOI:10.32604/biocell.2024.057904 - 30 December 2024

    Abstract Background: Impaired wound healing is one of the most well-known complications of type 2 diabetes mellitus. Experimental evidence suggested that treatment with Exendin-4, a glucagon-like peptide-1 agonist displaying a wide range of antidiabetic effects, can promote tissue regeneration. Objectives: Thus, this study aimed to examine the efficacy of topical treatment with Exendin-4 in accelerating wound healing in normoglycemic and hyperglycemic mice. Methods: For this purpose, two wounds inflicted on the back skin of 12 normo- and 12 hyperglycemic mice were injected intradermally with either saline solution or Exendin-4. Wounds were collected at the time of abrasion… More >

  • Open Access

    ARTICLE

    Smart MobiNet: A Deep Learning Approach for Accurate Skin Cancer Diagnosis

    Muhammad Suleman1, Faizan Ullah1, Ghadah Aldehim2,*, Dilawar Shah1, Mohammad Abrar1,3, Asma Irshad4, Sarra Ayouni2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3533-3549, 2023, DOI:10.32604/cmc.2023.042365 - 26 December 2023

    Abstract The early detection of skin cancer, particularly melanoma, presents a substantial risk to human health. This study aims to examine the necessity of implementing efficient early detection systems through the utilization of deep learning techniques. Nevertheless, the existing methods exhibit certain constraints in terms of accessibility, diagnostic precision, data availability, and scalability. To address these obstacles, we put out a lightweight model known as Smart MobiNet, which is derived from MobileNet and incorporates additional distinctive attributes. The model utilizes a multi-scale feature extraction methodology by using various convolutional layers. The ISIC 2019 dataset, sourced from… More >

Displaying 1-10 on page 1 of 31. Per Page