Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (229)
  • Open Access

    ABSTRACT

    Study on fracture behaviors of concrete using electronic speckle pattern interferometry and finite element method

    Helen Hongniao Chen1, Ray Kai Leung Su1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 91-102, 2010, DOI:10.3970/icces.2010.015.091

    Abstract In this study, Electronic Speckle Pattern Interferometry (ESPI) technique was used to measure the surface displacement and strain fields around cracks in concrete beams. ESPI has high accuracy and can determine full-field deformations of concrete. However, tiny rigid-body movements of beam specimens can spoil the ESPI measurement and cause virtual deformations and false strains. Based on the theory of geometrical optics, this paper proposes a method to eliminate the false strains caused by rigid-body motion. The correction procedure was validated experimentally. Furthermore, the crack evolution in a pre-notched beam is presented. The critical minimum crack width of a microcrack is… More >

  • Open Access

    ABSTRACT

    General ray method for solution of the Dirichlet boundary value problems for elliptic partial differential equations in domains with complicated geometry

    A. Grebennikov1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 85-90, 2010, DOI:10.3970/icces.2010.015.085

    Abstract New General Ray (GR) method for solution of the Dirichlet boundary value problem for the class of elliptic Partial Differential Equations (PDE) is proposed. GR-method consists in application of the Radon transform directly to the PDE and in reduction PDE to assemblage of Ordinary Differential Equations (ODE). The class of the PDE includes the Laplace, Poisson and Helmgoltz equations. GR-method presents the solution of the Dirichlet boundary value problem for this type of equations by explicit analytical formulas that use the direct and inverse Radon transform. Proposed version of GR-method justified theoretically, realized by fast algorithms and MATLAB software, which… More >

  • Open Access

    ABSTRACT

    HYBRID a powerful Boundary Element-Finite Element Method(BEM/FEM) software for analysis of seismic response of multiphase porous media

    B. Gatmiri1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.3, pp. 159-166, 2007, DOI:10.3970/icces.2007.004.159

    Abstract This document summarizes the basic concepts and steps of establishment of the set of equations of wave propoagation in far field and of the dynamic behaviour of porous media in the near field. A breif description of HYBRID software as a powerful tool for evaluation of local seismic site effect is presented. The Combination of the FEM and BEM and improvement of numerical algorithm for the time truncation are described. More >

  • Open Access

    ARTICLE

    An Automated Approach to Generate Test Cases From Use Case Description Model

    Thamer A. Alrawashed1,*, Ammar Almomani2, Ahmad Althunibat1, Abdelfatah Tamimi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 409-425, 2019, DOI:10.32604/cmes.2019.04681

    Abstract Test complexity and test adequacy are frequently raised by software developers and testing agents. However, there is little research works at this aspect on specification-based testing at the use case description level. Thus, this research proposes an automatic test cases generator approach to reduce the test complexity and to enhance the percentage of test coverage. First, to support the infrastructure for performing automatic, this proposed approach refines the use cases using use case describing template and save it in the text file. Then, the saved file is input to the Algorithm of Control Flow Diagram (ACFD) to convert use case… More >

  • Open Access

    ARTICLE

    OpenIFEM: A High Performance Modular Open-Source Software of the Immersed Finite Element Method for Fluid-Structure Interactions

    Jie Cheng1, Feimi Yu1, Lucy T. Zhang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 91-124, 2019, DOI:10.32604/cmes.2019.04318

    Abstract We present a high performance modularly-built open-source software - OpenIFEM. OpenIFEM is a C++ implementation of the modified immersed finite element method (mIFEM) to solve fluid-structure interaction (FSI) problems. This software is modularly built to perform multiple tasks including fluid dynamics (incompressible and slightly compressible fluid models), linear and nonlinear solid mechanics, and fully coupled fluid-structure interactions. Most of open-source software packages are restricted to certain discretization methods; some are under-tested, under-documented, and lack modularity as well as extensibility. OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and… More >

  • Open Access

    ARTICLE

    Optimum En-Masse Retraction of Six Maxillary Anterior Teeth in Lingual Orthodontics: a Numerical Investigation with 3-Dimensional Finite Element Analysis

    Abhishek M. Thote1,*, Rashmi V. Uddanwadiker1, Krishna Sharma2, Sunita Shrivastava2

    Molecular & Cellular Biomechanics, Vol.14, No.1, pp. 1-17, 2017, DOI:10.3970/mcb.2017.014.001

    Abstract The objective of this study was to devise an optimum force system to achieve en-masse retraction of six maxillary anterior teeth in lingual orthodontics (LiO). First, the set of equations was developed based on the mathematical computation to estimate optimum parameters of force system. Then, the computer software based on this mathematical computation was developed for the ease of estimation of force system. The verification of force system obtained with computer software was accomplished by three-dimensional finite element analysis (FEA). In FEA, it was clear that the desired en-masse retraction of six maxillary anterior teeth in LiO was achieved as… More >

  • Open Access

    ARTICLE

    Structural Finite Element Software Coupling Using Adapter Elements

    Andreas H. Schellenberg1,*, Yuli Huang2, Stephen A. Mahin

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 719-737, 2019, DOI:10.32604/cmes.2019.04835

    Abstract This paper describes a versatile and computationally efficient method for coupling several finite element analysis (FEA) programs together so that the unique modeling and analysis capabilities of each code can be utilized simultaneously to simulate the static or dynamic response of a complete numerical system. An arbitrary number of finite element analysis software packages can be coupled by adding two special types of elements, namely generic and adapter elements, to each of the finite element applications using their programming interface. These elements are inserted at the interfaces between the different sub-domains of the complete system modeled by each finite element… More >

  • Open Access

    ARTICLE

    Analysis of Office-Teaching Comprehensive Buildings Using a Modified Seismic Performance Evaluation Method

    Hanbo Zhu1,2, Changqing Miao1,2,*, Meiling Zhuang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.3, pp. 471-491, 2019, DOI:10.31614/cmes.2019.04382

    Abstract Current building design codes allow the appearance of structural and nonstructural damage under design basis earthquakes. The research regarding probabilistic seismic loss estimation in domestic building structure is urgent. The evaluation in this paper is based on a 11-story reinforced concrete office building, incremental dynamic analysis (IDA) is conducted in Perform 3D program using models capable to simulate all possible limit states up to collapse. Next, the probability distribution of post-earthquake casualties, rebuild costs repair costs and business downtime loss are calculated in PACT software for the studied building considering the modified component vulnerability groups and population flow models. The… More >

  • Open Access

    ARTICLE

    Acoustic Potential Generation under Acoustic Standing Waves Modeling using CFD Software

    C. S. Iorio1, C. Perfetti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 27-48, 2015, DOI:10.3970/fdmp.2015.011.027

    Abstract In the past few years, modeling of the Acoustic StandingWaves (ASW) phenomena has become a topic of great interest due to its theoretical connections with particle/cells manipulation techniques, which represent important tools in the biotechnology field. The present paper proposes a model based on the use of moving wall boundary conditions coupled with a viscous compressible fluid in a square channel. This model successfully achieved the generation of ASWs in the square cross-section for several resonance frequencies; the corresponding acoustic potential for the fundamental resonant mode and several harmonics have also been calculated and are discussed here. More >

Displaying 221-230 on page 23 of 229. Per Page