Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Spectrotemporal Deep Learning for Heart Sound Classification under Clinical Noise Conditions

    Akbare Yaqub1,2, Muhammad Sadiq Orakzai2, Muhammad Farrukh Qureshi3,4, Zohaib Mushtaq5, Imran Siddique6,7, Taha Radwan8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2503-2533, 2025, DOI:10.32604/cmes.2025.071571 - 26 November 2025

    Abstract Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, necessitating efficient diagnostic tools. This study develops and validates a deep learning framework for phonocardiogram (PCG) classification, focusing on model generalizability and robustness. Initially, a ResNet-18 model was trained on the PhysioNet 2016 dataset, achieving high accuracy. To assess real-world viability, we conducted extensive external validation on the HLS-CMDS dataset. We performed four key experiments: (1) Fine-tuning the PhysioNet-trained model for binary (Normal/Abnormal) classification on HLS-CMDS, achieving 88% accuracy. (2) Fine-tuning the same model for multi-class classification (Normal, Murmur, Extra Sound, Rhythm Disorder), which yielded… More >

  • Open Access

    ARTICLE

    Detecting Vehicle Mechanical Defects Using an Ensemble Deep Learning Model with Mel Frequency Cepstral Coefficients from Acoustic Data

    Mudasir Ali1, Muhammad Faheem Mushtaq2, Urooj Akram2, Nagwan Abdel Samee3,*, Mona M. Jamjoom4, Imran Ashraf5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1863-1901, 2025, DOI:10.32604/cmes.2025.070389 - 26 November 2025

    Abstract Differentiating between regular and abnormal noises in machine-generated sounds is a crucial but difficult problem. For accurate audio signal classification, suitable and efficient techniques are needed, particularly machine learning approaches for automated classification. Due to the dynamic and diverse representative characteristics of audio data, the probability of achieving high classification accuracy is relatively low and requires further research efforts. This study proposes an ensemble model based on the LeNet and hierarchical attention mechanism (HAM) models with MFCC features to enhance the models’ capacity to handle bias. Additionally, CNNs, bidirectional LSTM (BiLSTM), CRNN, LSTM, capsule network More >

  • Open Access

    ARTICLE

    Enhancing Heart Sound Classification with Iterative Clustering and Silhouette Analysis: An Effective Preprocessing Selective Method to Diagnose Rare and Difficult Cardiovascular Cases

    Sami Alrabie#,*, Ahmed Barnawi#

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2481-2519, 2025, DOI:10.32604/cmes.2025.067977 - 31 August 2025

    Abstract In the effort to enhance cardiovascular diagnostics, deep learning-based heart sound classification presents a promising solution. This research introduces a novel preprocessing method: iterative k-means clustering combined with silhouette score analysis, aimed at downsampling. This approach ensures optimal cluster formation and improves data quality for deep learning models. The process involves applying k-means clustering to the dataset, calculating the average silhouette score for each cluster, and selecting the cluster with the highest score. We evaluated this method using 10-fold cross-validation across various transfer learning models from different families and architectures. The evaluation was conducted on… More >

  • Open Access

    ARTICLE

    Enhancing Respiratory Sound Classification Based on Open-Set Semi-Supervised Learning

    Won-Yang Cho, Sangjun Lee*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2847-2863, 2025, DOI:10.32604/cmc.2025.066373 - 03 July 2025

    Abstract The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases. However, auscultation is highly subjective, making it challenging to analyze respiratory sounds accurately. Although deep learning has been increasingly applied to this task, most existing approaches have primarily relied on supervised learning. Since supervised learning requires large amounts of labeled data, recent studies have explored self-supervised and semi-supervised methods to overcome this limitation. However, these approaches have largely assumed a closed-set setting, where the classes present in the unlabeled data are considered identical to those in the labeled data. In contrast, this… More >

  • Open Access

    ARTICLE

    Cardiovascular Sound Classification Using Neural Architectures and Deep Learning for Advancing Cardiac Wellness

    Deepak Mahto1, Sudhakar Kumar1, Sunil K. Singh1, Amit Chhabra1, Irfan Ahmad Khan2, Varsha Arya3,4, Wadee Alhalabi5, Brij B. Gupta6,7,8,9,*, Bassma Saleh Alsulami10

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3743-3767, 2025, DOI:10.32604/cmes.2025.063427 - 30 June 2025

    Abstract Cardiovascular diseases (CVDs) remain one of the foremost causes of death globally; hence, the need for several must-have, advanced automated diagnostic solutions towards early detection and intervention. Traditional auscultation of cardiovascular sounds is heavily reliant on clinical expertise and subject to high variability. To counter this limitation, this study proposes an AI-driven classification system for cardiovascular sounds whereby deep learning techniques are engaged to automate the detection of an abnormal heartbeat. We employ FastAI vision-learner-based convolutional neural networks (CNNs) that include ResNet, DenseNet, VGG, ConvNeXt, SqueezeNet, and AlexNet to classify heart sound recordings. Instead of… More >

  • Open Access

    ARTICLE

    Intelligent Sound-Based Early Fault Detection System for Vehicles

    Fawad Nasim1,2,*, Sohail Masood1,2, Arfan Jaffar1,2, Usman Ahmad1, Muhammad Rashid3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3175-3190, 2023, DOI:10.32604/csse.2023.034550 - 03 April 2023

    Abstract An intelligent sound-based early fault detection system has been proposed for vehicles using machine learning. The system is designed to detect faults in vehicles at an early stage by analyzing the sound emitted by the car. Early detection and correction of defects can improve the efficiency and life of the engine and other mechanical parts. The system uses a microphone to capture the sound emitted by the vehicle and a machine-learning algorithm to analyze the sound and detect faults. A possible fault is determined in the vehicle based on this processed sound. Binary classification is… More >

  • Open Access

    ARTICLE

    Deep Learning-based Environmental Sound Classification Using Feature Fusion and Data Enhancement

    Rashid Jahangir1,*, Muhammad Asif Nauman2, Roobaea Alroobaea3, Jasem Almotiri3, Muhammad Mohsin Malik1, Sabah M. Alzahrani3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1069-1091, 2023, DOI:10.32604/cmc.2023.032719 - 22 September 2022

    Abstract Environmental sound classification (ESC) involves the process of distinguishing an audio stream associated with numerous environmental sounds. Some common aspects such as the framework difference, overlapping of different sound events, and the presence of various sound sources during recording make the ESC task much more complicated and complex. This research is to propose a deep learning model to improve the recognition rate of environmental sounds and reduce the model training time under limited computation resources. In this research, the performance of transformer and convolutional neural networks (CNN) are investigated. Seven audio features, chromagram, Mel-spectrogram, tonnetz,… More >

Displaying 1-10 on page 1 of 7. Per Page