Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells (BMSCs)

    WENQI CHEN1,#, XIAOYANG CHU2,#, YANG ZENG3,#, YOUSHENG YAN4, YIPENG WANG4, DONGLAN SUN1, DONGLIANG ZHANG5, JING ZHANG1,*, KAI YANG4,*

    BIOCELL, Vol.47, No.7, pp. 1561-1569, 2023, DOI:10.32604/biocell.2023.028851

    Abstract Background: Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has a vital role in osteogenesis. However, the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended. A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome (ARRS). This study attempted to explore the impact of the ROR2: c.904C>T variant specifically on the osteogenic differentiation of BMSCs. Methods: Coimmunoprecipitation (CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a. Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a… More > Graphic Abstract

    A novel mutation in <i>ROR2</i> led to the loss of function of <i>ROR2</i> and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells (BMSCs)

  • Open Access

    ARTICLE

    LncRNA ZFAS1 regulates cardiomyocyte differentiation of human embryonic stem cells

    YANG CAO1,#, YINING LIU1,#, YANG YU1, XIAOFEI GUO1, XIUXIU WANG1, WENYA MA1, HANJING LI2, ZHONGYU REN2, XINLU GAO2, SIJIA LI2, HAOYU JI2, HONGYANG CHEN2, HONG YAN2, YANAN TIAN2, XIN WANG2, BENZHI CAI1,2,*

    BIOCELL, Vol.47, No.6, pp. 1407-1416, 2023, DOI:10.32604/biocell.2023.029080

    Abstract Background: Cardiomyocytes derived from human embryonic stem cells (hESCs) are regulated by complex and stringent gene networks during differentiation. Long non-coding RNAs (lncRNAs) exert critical epigenetic regulatory functions in multiple differentiation processes. However, the involvement of lncRNAs in the differentiation of hESCs into cardiomyocytes has not yet been fully elucidated. Here, we identified the key roles of ZFAS1 (lncRNA zinc finger antisense 1) in the differentiation of cardiomyocytes from hESCs. Methods: A model of cardiomyocyte differentiation from stem cells was established using the monolayer differentiation method, and the number of beating hESCs-derived cardiomyocytes was calculated. Gene expression was analyzed by… More >

  • Open Access

    ARTICLE

    Effects of docosahexaenoic acid or arachidonic acid supplementation on the behavior of cardiomyocytes derived from human pluripotent stem cells

    MIZUNA YANO1, KOTA HIROI1, TETSUYA YUASA1, KENJI INOUE1, OSAMU YAMAMOTO1, TAKAO NAKAMURA2, DAISUKE SATO1, ZHONGGANG FENG1,*

    BIOCELL, Vol.47, No.5, pp. 1095-1106, 2023, DOI:10.32604/biocell.2023.028186

    Abstract Background: Human heart changes its energetic substrates from lactate and glucose to fatty acids during the neonatal period. Noticing the lack of fatty acids in media for the culture of cardiomyocytes derived from human pluripotent stem cells (hiPS-CM), researchers have supplemented mixtures of fatty acids to hiPS-CM and reported the enhancement in the maturation of hiPS-CM. In our previous studies, we separately supplemented two polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) or arachidonic acid (AA), to rat fetal cardiomyocytes and found that the supplementations upregulated the expressions of mRNAs for cardiomyocyte differentiation, fatty acid metabolism, and cellular adhesion. The enhancement… More >

  • Open Access

    ARTICLE

    Immunoregulatory effects of human amniotic mesenchymal stem cells and their exosomes on human peripheral blood mononuclear cells

    XIN TIAN, XIANGLING HE*, SHUQIN QIAN, RUNYING ZOU, KEKE CHEN, CHENGGUANG ZHU, ZEXI YIN

    BIOCELL, Vol.47, No.5, pp. 1085-1093, 2023, DOI:10.32604/biocell.2023.027090

    Abstract Background: The immunomodulatory effects of mesenchymal stem cells (MSCs) and their exosomes have been receiving increasing attention. This study investigated the immunoregulatory effects of human amniotic mesenchymal stem cells (hAMSCs) and their exosomes on phytohemagglutinin (PHA)-induced peripheral blood mononuclear cells (PBMCs). Methods: The hAMSCs used in the experiment were identified by light microscopy and flow cytometry, and the differentiation ability of the cells was determined by Oil Red O and Alizarin Red staining. The expressions of transforming growth factor (TGF)-β, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2 (COX-2), hepatocyte growth factor (HGF), and interleukin (IL)-6 were detected by quantitative real-time polymerase chain reaction… More >

  • Open Access

    REVIEW

    Phytochemistry and ethnomedicinal qualities of metabolites from Phyllanthus emblica L.: A review

    VIJAY KUMAR1,#, PRAVEEN C. RAMAMURTHY2,#, SIMRANJEET SINGH2,#, DALJEET SINGH DHANJAL3, PARUL PARIHAR4, DEEPIKA BHATIA5, RAM PRASAD6,*, JOGINDER SINGH7,*

    BIOCELL, Vol.47, No.5, pp. 1159-1176, 2023, DOI:10.32604/biocell.2023.022065

    Abstract Phyllanthus emblica or Indian gooseberry is an integrated part of Ayurvedic and Traditional Chinese Medicines. For several decades, the well-known ancient herb has been extensively utilized in traditional medicine to cure diseases like fever, diabetes, constipation, jaundice, ulcers, biliousness, anemia, anorexia, and dyspepsia. In the traditional system, Indian gooseberry has various ethnomedicinal applications. In the Ayurvedic system, different methods of administration (anupan) have shown different ethnomedicinal properties of Indian gooseberry. Seventy well-known chemical components in Indian gooseberry have been identified through phytochemical evaluation, among which the flavonoids and phenols are most prominent. From the toxicity perspective, it is considered a… More >

  • Open Access

    ARTICLE

    Single-cell sequencing analysis reveals the molecular mechanism of promotion of SCAP proliferation upon AZD2858 treatment

    YIFAN XU1,#, DONGMEI CHENG1,#, LEI HU1, XIN DONG2, LIYING LV2, CHEN ZHANG2, JIAN ZHOU1,3,4,*

    BIOCELL, Vol.47, No.4, pp. 825-836, 2023, DOI:10.32604/biocell.2023.026122

    Abstract The Wnt/β-catenin signaling pathway is the main target of tooth regeneration regulation. Treatment of cells with AZD2858 stimulates the Wnt/β-catenin signaling pathway, yet the function of this pathway in tooth regeneration remains unclear. Here, we found that AZD2858 promotes the accumulation of β-catenin in the nuclei of stem cells from the apical papilla (SCAPs) and enhances cell proliferation. Single-cell sequencing was performed on SCAPs treated with AZD2858. Eight clusters were identified, namely SCAPs-CNTNAP2, SCAPs-DTL, SCAPs-MYH11, SCAPs-MKI67, SCAPs-CXCL8, SCAPs-TPM2, SCAPs-IFIT2 and SCAPs-NEK10. The pseudo-time trajectory analysis showed that AZD2858 enhanced the evolution of SCAPs from SCAPs-TMP2 clusters to SCAPs-MYH11, SCAPs-CNTNAPs and… More >

  • Open Access

    ARTICLE

    IGF2BP3-induced activation of EIF5B contributes to progression of hepatocellular carcinoma cells

    XIAOYIN LI1,#, QIAN WANG2,#, HONGFENG LIANG3,#, SHISHENG CHEN4,#, HAIWEN CHEN1,#, YAOYONG LU1,*, CHANGFU YANG1,*

    Oncology Research, Vol.30, No.2, pp. 77-87, 2022, DOI:10.32604/or.2022.026511

    Abstract In this study, we investigated the functional role of eukaryotic initiation factor 5B (EIF5B) in hepatocellular carcinoma (HCC) and the underlying mechanisms. Bioinformatics analysis demonstrated that the EIF5B transcript and protein levels as well as the EIF5Bcopy number were significantly higher in the HCC tissues compared with the non-cancerous liver tissues. Down-regulation of EIF5B significantly decreased proliferation and invasiveness of the HCC cells. Furthermore, EIF5B knockdown suppressed epithelial-mesenchymal transition (EMT) and the cancer stem cell (CSC) phenotype. Down-regulation of EIF5B also increased the sensitivity of HCC cells to 5-fluorouracil (5-FU). In the HCC cells, activation of the NF-kappa B signaling… More >

  • Open Access

    REVIEW

    Therapeutic application of mesenchymal stem cells-derived extracellular vesicles in colorectal cancer

    MOHADESEH NEMATI1, YOUSEF RASMI1, JAFAR REZAIE2,*

    BIOCELL, Vol.47, No.3, pp. 455-464, 2023, DOI:10.32604/biocell.2023.025603

    Abstract Colorectal cancer (CRC) is the third most common cancer and the leading cause of cancer death globally. Resistance to therapy is a challenge for CRC treatment. Mesenchymal stem cells (MSCs) have become one of the furthermost effective approaches for tumor treatment due to their specific feature; however, their therapeutic function is controversial. Recently, extracellular vesicles (EVs) derived from MSCs (MSCs-EVs) have attracted extensive research attention due to their promising role in CRC treatment. EVs are cell-derived vesicles that transfer different biomolecules between cells, contributing to intracellular communication. MSCs-EVs can suppress CRC by delivering therapeutic agents to tumor cells. Several studies… More >

  • Open Access

    ARTICLE

    The antioxidant trolox inhibits aging and enhances prostaglandin E-2 secretion in mesenchymal stem cells

    XIAOXU ZHANG1,2, LIN ZHANG1, LIN DU3, HUIYAN SUN4, XIA ZHAO2, YANG SUN1, WEI WANG2,*, LISHENG WANG1,3,*

    BIOCELL, Vol.47, No.2, pp. 385-392, 2023, DOI:10.32604/biocell.2023.025203

    Abstract Mesenchymal stem cells (MSCs) have been widely used in regenerative medicine and clinical therapy due to their capabilities of proliferation, differentiation, and immune regulation. However, during in vitro expansion, MSCs are prone to aging, which largely limits their application. Prostaglandin E-2 (PGE-2) is a key effector secreted by MSCs to exert immunomodulatory effects. By screening the compound library for PGE-2 secretion, the antioxidant trolox was verified as a stimulator of MSCs to secrete PGE-2. The effect of antioxidant trolox on biological characteristics of MSCS, including aging, proliferation, and gene expression, was examined. The results demonstrated that trolox can resist aging,… More >

  • Open Access

    REVIEW

    Dental pulp stem cells and banking of teeth as a lifesaving therapeutic vista

    SUKUMARAN ANIL1,2,*, RAMYA RAMADOSS3, NEBU G. THOMAS4, JASMIN M. GEORGE4, VISHNUPRIYA K. SWEETY4

    BIOCELL, Vol.47, No.1, pp. 71-80, 2023, DOI:10.32604/biocell.2023.024334

    Abstract Exfoliated deciduous or an extracted healthy adult tooth can be used to harvest, process, and cryogenically preserve dental pulp stem cells. Future stem cell-based regenerative medicine methods could benefit significantly from these mesenchymal stem cells. Teeth serve as a substantial source of mesenchymal stem cells, otherwise disposed of as medical waste. Care should be taken to store this treasure trove of stem cells. Collective responsibility of patients, dentists, and physicians is necessary to ensure that this valuable resource is not wasted and that every possible dental pulp stem cell is available for use in the future. The dental pulp stem… More >

Displaying 11-20 on page 2 of 106. Per Page