Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ABSTRACT

    CFD case study to optimize surgical adjustment of ventricular assist device implantation to minimize stroke risk part I: steady-state CFD modeling

    Andres F. Osorio1, Ruben Osorio1, Reginald Tran1, Andres Ceballos1, Alain Kassab1, Eduardo Divo2, I. Ricardo Argueta-Morales3, William M. DeCampli3,4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.4, pp. 123-124, 2010, DOI:10.3970/icces.2010.015.123

    Abstract Presently, mechanical support is the most promising alternative to cardiac transplantation. Ventricular Assist Devices (VADs) were originally used to provide mechanical circulatory support in patients waiting planned heart transplantation (“bridge-to-transplantation” therapy). The success of short-term bridge devices led to clinical trials evaluating the clinical suitability of long-term support (“destination” therapy) with left ventricular assist devices (LVADs). The first larger-scale, randomized trial that tested long-term support with a LVAD reported a 44% reduction in the risk of stroke or death in patients with a LVAD. In spite of the success of LVADs as bridge-to-transplantation and long-term support. Patients carrying these devices… More >

  • Open Access

    REVIEW

    Systems Neuroprotective Mechanisms in Ischemic Stroke

    Shu Q. Liu*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 75-85, 2019, DOI:10.32604/mcb.2019.06920

    Abstract Ischemic stroke, although causing brain infarction and neurological deficits, can activate innate neuroprotective mechanisms, including regional mechanisms within the ischemic brain and distant mechanisms from non-ischemic organs such as the liver, spleen, and pancreas, supporting neuronal survival, confining brain infarction, and alleviating neurological deficits. Both regional and distant mechanisms are defined as systems neuroprotective mechanisms. The regional neuroprotective mechanisms involve release and activation of neuroprotective factors such as adenosine and bradykinin, inflammatory responses, expression of growth factors such as nerve growth factors and neurotrophins, and activation and differentiation of resident neural stem cells to neurons and glial cells. The distant… More >

  • Open Access

    REVIEW

    Molecular Basis of Force Development by Skeletal Muscles During and After Stretch

    Dilson E. Rassier*

    Molecular & Cellular Biomechanics, Vol.6, No.4, pp. 229-242, 2009, DOI:10.3970/mcb.2009.006.229

    Abstract When activated skeletal muscles are stretched at slow velocities, force increases in two phases: (i) a fast increase, and (ii) a slow increase. The transition between these phases is commonly associated with the mechanical detachment of cross-bridges from actin. This phenomenon is referred to asforce enhancement during stretch. After the stretch, force decreases and reaches steady-state at levels that are higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon is referred to asresidual force enhancement.The mechanisms behind the increase in force during and after stretch are still a matter of debate, and have physiological… More >

  • Open Access

    ARTICLE

    An Auto-Calibration Approach to Robust and Secure Usage of Accelerometers for Human Motion Analysis in FES Therapies

    Mingxu Sun1,#,*, Yinghang Jiang2,3,#, Qi Liu3,4,*, Xiaodong Liu4

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 67-83, 2019, DOI:10.32604/cmc.2019.06079

    Abstract A Functional Electrical stimulation (FES) therapy is a common rehabilitation intervention after stroke, and finite state machine (FSM) has proven to be an effective and intuitive FES control method. The FSM uses the data information generated by the accelerometer to robustly trigger state transitions. In the medical field, it is necessary to obtain highly safe and accurate acceleration data. In order to ensure the accuracy of the acceleration sensor data without affecting the accuracy of the motion analysis, we need to perform acceleration big data calibration. In this context, we propose a method for robustly calculating the auto-calibration gain using… More >

Displaying 31-40 on page 4 of 34. Per Page