Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (108)
  • Open Access

    ARTICLE

    ISHD: Intelligent Standing Human Detection of Video Surveillance for the Smart Examination Environment

    Wu Song1, Yayuan Tang2,3,*, Wenxue Tan1, Sheng Ren1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 509-526, 2023, DOI:10.32604/cmes.2023.026933 - 23 April 2023

    Abstract In the environment of smart examination rooms, it is important to quickly and accurately detect abnormal behavior (human standing) for the construction of a smart campus. Based on deep learning, we propose an intelligent standing human detection (ISHD) method based on an improved single shot multibox detector to detect the target of standing human posture in the scene frame of exam room video surveillance at a specific examination stage. ISHD combines the MobileNet network in a single shot multibox detector network, improves the posture feature extractor of a standing person, merges prior knowledge, and introduces More >

  • Open Access

    ARTICLE

    An Efficient Attention-Based Strategy for Anomaly Detection in Surveillance Video

    Sareer Ul Amin1, Yongjun Kim2, Irfan Sami3, Sangoh Park1,*, Sanghyun Seo4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3939-3958, 2023, DOI:10.32604/csse.2023.034805 - 03 April 2023

    Abstract In the present technological world, surveillance cameras generate an immense amount of video data from various sources, making its scrutiny tough for computer vision specialists. It is difficult to search for anomalous events manually in these massive video records since they happen infrequently and with a low probability in real-world monitoring systems. Therefore, intelligent surveillance is a requirement of the modern day, as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies. In this article, we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance… More >

  • Open Access

    ARTICLE

    Multiple Pedestrian Detection and Tracking in Night Vision Surveillance Systems

    Ali Raza1, Samia Allaoua Chelloug2,*, Mohammed Hamad Alatiyyah3, Ahmad Jalal1, Jeongmin Park4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3275-3289, 2023, DOI:10.32604/cmc.2023.029719 - 31 March 2023

    Abstract Pedestrian detection and tracking are vital elements of today’s surveillance systems, which make daily life safe for humans. Thus, human detection and visualization have become essential inventions in the field of computer vision. Hence, developing a surveillance system with multiple object recognition and tracking, especially in low light and night-time, is still challenging. Therefore, we propose a novel system based on machine learning and image processing to provide an efficient surveillance system for pedestrian detection and tracking at night. In particular, we propose a system that tackles a two-fold problem by detecting multiple pedestrians in… More >

  • Open Access

    ARTICLE

    Quantum Computing Based Neural Networks for Anomaly Classification in Real-Time Surveillance Videos

    MD. Yasar Arafath1,*, A. Niranjil Kumar2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2489-2508, 2023, DOI:10.32604/csse.2023.035732 - 09 February 2023

    Abstract For intelligent surveillance videos, anomaly detection is extremely important. Deep learning algorithms have been popular for evaluating real-time surveillance recordings, like traffic accidents, and criminal or unlawful incidents such as suicide attempts. Nevertheless, Deep learning methods for classification, like convolutional neural networks, necessitate a lot of computing power. Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics. As a result, the focus of this research is on developing a hybrid quantum computing model which is based on deep learning. This research develops a Quantum Computing-based Convolutional Neural Network… More >

  • Open Access

    ARTICLE

    Efficient Deep Learning Framework for Fire Detection in Complex Surveillance Environment

    Naqqash Dilshad1, Taimoor Khan2, JaeSeung Song1,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 749-764, 2023, DOI:10.32604/csse.2023.034475 - 20 January 2023

    Abstract To prevent economic, social, and ecological damage, fire detection and management at an early stage are significant yet challenging. Although computationally complex networks have been developed, attention has been largely focused on improving accuracy, rather than focusing on real-time fire detection. Hence, in this study, the authors present an efficient fire detection framework termed E-FireNet for real-time detection in a complex surveillance environment. The proposed model architecture is inspired by the VGG16 network, with significant modifications including the entire removal of Block-5 and tweaking of the convolutional layers of Block-4. This results in higher performance… More >

  • Open Access

    ARTICLE

    Visual News Ticker Surveillance Approach from Arabic Broadcast Streams

    Moeen Tayyab1, Ayyaz Hussain2,*, Usama Mir3, M. Aqeel Iqbal4, Muhammad Haneef5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6177-6193, 2023, DOI:10.32604/cmc.2023.034669 - 28 December 2022

    Abstract The news ticker is a common feature of many different news networks that display headlines and other information. News ticker recognition applications are highly valuable in e-business and news surveillance for media regulatory authorities. In this paper, we focus on the automatic Arabic Ticker Recognition system for the Al-Ekhbariya news channel. The primary emphasis of this research is on ticker recognition methods and storage schemes. To that end, the research is aimed at character-wise explicit segmentation using a semantic segmentation technique and words identification method. The proposed learning architecture considers the grouping of homogeneous-shaped classes. More >

  • Open Access

    ARTICLE

    A Personalized Video Synopsis Framework for Spherical Surveillance Video

    S. Priyadharshini*, Ansuman Mahapatra

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2603-2616, 2023, DOI:10.32604/csse.2023.032506 - 21 December 2022

    Abstract Video synopsis is an effective way to easily summarize long-recorded surveillance videos. The omnidirectional view allows the observer to select the desired fields of view (FoV) from the different FoV available for spherical surveillance video. By choosing to watch one portion, the observer misses out on the events occurring somewhere else in the spherical scene. This causes the observer to experience fear of missing out (FOMO). Hence, a novel personalized video synopsis approach for the generation of non-spherical videos has been introduced to address this issue. It also includes an action recognition module that makes More >

  • Open Access

    ARTICLE

    Performance Analysis of Hybrid RR Algorithm for Anomaly Detection in Streaming Data

    L. Amudha1,*, R. PushpaLakshmi2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2299-2312, 2023, DOI:10.32604/csse.2023.031169 - 21 December 2022

    Abstract Automated live video stream analytics has been extensively researched in recent times. Most of the traditional methods for video anomaly detection is supervised and use a single classifier to identify an anomaly in a frame. We propose a 3-stage ensemble-based unsupervised deep reinforcement algorithm with an underlying Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). In the first stage, an ensemble of LSTM-RNNs are deployed to generate the anomaly score. The second stage uses the least square method for optimal anomaly score generation. The third stage adopts award-based reinforcement learning to update the… More >

  • Open Access

    ARTICLE

    Automatic Anomaly Monitoring in Public Surveillance Areas

    Mohammed Alarfaj1, Mahwish Pervaiz2, Yazeed Yasin Ghadi3, Tamara al Shloul4, Suliman A. Alsuhibany5, Ahmad Jalal6, Jeongmin Park7,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2655-2671, 2023, DOI:10.32604/iasc.2023.027205 - 17 August 2022

    Abstract With the dramatic increase in video surveillance applications and public safety measures, the need for an accurate and effective system for abnormal/suspicious activity classification also increases. Although it has multiple applications, the problem is very challenging. In this paper, a novel approach for detecting normal/abnormal activity has been proposed. We used the Gaussian Mixture Model (GMM) and Kalman filter to detect and track the objects, respectively. After that, we performed shadow removal to segment an object and its shadow. After object segmentation we performed occlusion detection method to detect occlusion between multiple human silhouettes and… More >

  • Open Access

    ARTICLE

    Realtime Object Detection Through M-ResNet in Video Surveillance System

    S. Prabu1,*, J. M. Gnanasekar2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2257-2271, 2023, DOI:10.32604/iasc.2023.029877 - 19 July 2022

    Abstract Object detection plays a vital role in the video surveillance systems. To enhance security, surveillance cameras are now installed in public areas such as traffic signals, roadways, retail malls, train stations, and banks. However, monitoring the video continually at a quicker pace is a challenging job. As a consequence, security cameras are useless and need human monitoring. The primary difficulty with video surveillance is identifying abnormalities such as thefts, accidents, crimes, or other unlawful actions. The anomalous action does not occur at a higher rate than usual occurrences. To detect the object in a video,… More >

Displaying 31-40 on page 4 of 108. Per Page