Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization

    Chenxi Lyu1, Chen Dong1, Qiancheng Xiong1, Yuzhong Chen1, Qian Weng1,*, Zhenyi Chen2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3371-3391, 2025, DOI:10.32604/cmc.2025.065153 - 03 July 2025

    Abstract The rapid advancement of Industry 4.0 has revolutionized manufacturing, shifting production from centralized control to decentralized, intelligent systems. Smart factories are now expected to achieve high adaptability and resource efficiency, particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands. To address the challenges of dynamic task allocation, uncertainty, and real-time decision-making, this paper proposes Pathfinder, a deep reinforcement learning-based scheduling framework. Pathfinder models scheduling data through three key matrices: execution time (the time required for a job to complete), completion time (the actual time at which a job is finished),… More >

  • Open Access

    ARTICLE

    Efficient Task Allocation for Energy and Execution Time Trade-Off in Edge Computing Using Multi-Objective IPSO

    Jafar Aminu1,2,*, Rohaya Latip1,*, Zurina Mohd Hanafi1, Shafinah Kamarudin1, Danlami Gabi2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2989-3011, 2025, DOI:10.32604/cmc.2025.062451 - 03 July 2025

    Abstract As mobile edge computing continues to develop, the demand for resource-intensive applications is steadily increasing, placing a significant strain on edge nodes. These nodes are normally subject to various constraints, for instance, limited processing capability, a few energy sources, and erratic availability being some of the common ones. Correspondingly, these problems require an effective task allocation algorithm to optimize the resources through continued high system performance and dependability in dynamic environments. This paper proposes an improved Particle Swarm Optimization technique, known as IPSO, for multi-objective optimization in edge computing to overcome these issues. To this… More >

  • Open Access

    ARTICLE

    Heterogeneous Task Allocation Model and Algorithm for Intelligent Connected Vehicles

    Neng Wan1,2, Guangping Zeng1,*, Xianwei Zhou1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4281-4302, 2024, DOI:10.32604/cmc.2024.054794 - 12 September 2024

    Abstract With the development of vehicles towards intelligence and connectivity, vehicular data is diversifying and growing dramatically. A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle (ICV) applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points (NCPs). Considering the amount of task data and the idle resources of NCPs, a computing resource scheduling model for NCPs is established. Taking the heterogeneous task execution delay threshold as a constraint, the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs. The… More >

  • Open Access

    ARTICLE

    MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge

    Tengda Li, Gang Wang, Qiang Fu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2559-2586, 2024, DOI:10.32604/cmes.2024.052039 - 08 July 2024

    Abstract Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation (DTA) and high-dimensional decision space with single agent, this paper combines the deep reinforcement learning (DRL) theory and an improved Multi-Agent Deep Deterministic Policy Gradient (MADDPG-D2) algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA. The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, and considers the introduction of a double noise mechanism to increase the action exploration… More >

  • Open Access

    REVIEW

    A Systematic Literature Review on Task Allocation and Performance Management Techniques in Cloud Data Center

    Nidhika Chauhan1, Navneet Kaur2, Kamaljit Singh Saini2, Sahil Verma3, Abdulatif Alabdulatif4, Ruba Abu Khurma5,7, Maribel Garcia-Arenas6, Pedro A. Castillo6,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 571-608, 2024, DOI:10.32604/csse.2024.042690 - 20 May 2024

    Abstract As cloud computing usage grows, cloud data centers play an increasingly important role. To maximize resource utilization, ensure service quality, and enhance system performance, it is crucial to allocate tasks and manage performance effectively. The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers. The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies, categories, and gaps. A literature review was conducted, which included the analysis of 463 task allocations and 480 performance management papers. The… More >

  • Open Access

    ARTICLE

    Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs

    Kai Wei1, Song Yu2, Qingxian Pan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 607-622, 2024, DOI:10.32604/cmc.2024.048240 - 25 April 2024

    Abstract Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation. While traditional methods for task allocation can help reduce costs and improve efficiency, they may encounter challenges when dealing with abnormal data flow nodes, leading to decreased allocation accuracy and efficiency. To address these issues, this study proposes a novel two-part invalid detection task allocation framework. In the first step, an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data. Compared to the baseline method, the model achieves an approximately 4% increase in the F1 value More >

  • Open Access

    ARTICLE

    Optimizing Service Stipulation Uncertainty with Deep Reinforcement Learning for Internet Vehicle Systems

    Zulqar Nain1, B. Shahana2, Shehzad Ashraf Chaudhry3, P. Viswanathan4, M.S. Mekala1, Sung Won Kim1,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5705-5721, 2023, DOI:10.32604/cmc.2023.033194 - 28 December 2022

    Abstract Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System (CPS) applications. Edge devices enable limited computational capacity and energy availability that hamper end user performance. We designed a novel performance measurement index to gauge a device’s resource capacity. This examination addresses the offloading mechanism issues, where the end user (EU) offloads a part of its workload to a nearby edge server (ES). Sometimes, the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources (such as storage and… More >

  • Open Access

    ARTICLE

    Task Allocation Approach for Minimizing Make-Span in Wireless Sensor Actor Networks

    Mohammad Reza Okhovvat1, Mohammad Taghi Kheirabadi1,*, Ali Nodehi1, Morteza Okhovvat2

    Computer Systems Science and Engineering, Vol.39, No.2, pp. 165-178, 2021, DOI:10.32604/csse.2021.05468 - 20 July 2021

    Abstract Wireless Sensor Actor Networks (WSANs) have contributed to the development of pervasive computing wherein time consideration to perform the tasks of pervasive applications is necessary. Hence, time constraint is one of the major challenges of WSANs. In this paper, we propose an analytical approach based on queuing theory to minimize the total time taken for completion of tasks, i.e., make-span, in WSANs with hybrid architecture. The best allocation rates of tasks to actor nodes are figured out through solving inequities and qualities resulting from a steady state analysis of the proposed model. Applying the calculated… More >

Displaying 1-10 on page 1 of 8. Per Page