Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (291)
  • Open Access

    ARTICLE

    THERMAL DIFFUSION AND RADIATION EFFECTS ON UNSTEADY FREE CONVECTION FLOW IN THE PRESENCE OF MAGNETIC FIELD FIXED RELATIVE TO THE FLUID OR TO THE PLATE

    B. Rushi Kumar* , T. Sravan Kumar, A .G Vijaya Kumar

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-9, 2015, DOI:10.5098/hmt.6.12

    Abstract The objective of this study is to investigated thermal diffusion and radiation effects on unsteady free convection chemically reacting fluid flow past an accelerated infinite inclined plate with variable temperature and mass diffusion under the influence of uniform transverse magnetic field when the magnetic lines of force are fixed relative to the fluid or to the plate studied in two cases, (i) when magnetic field fixed relative to the fluid (K=0), (ii) and the magnetic field fixed relative to the plate (K=1) have been considered. A general exact solution of the dimensionless governing partial differential equation is obtained by the… More >

  • Open Access

    ARTICLE

    CHEMICAL REACTION AND RADIATION EFFECTS ON UNSTEADY MHD MICROPOLAR FLUID FLOW OVER A VERTICAL PLATE WITH VARIABLE TEMPERATURE

    Mekonnen Shiferaw Ayano*, J. S. Mathunjwa

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.9

    Abstract This paper presents a study of the Magnetohydrodynamic flow of incompressible micropolar fluid past an infinite vertical porous plate with combined heat and mass transfer. The plate oscillate harmonically in its own plane and the temperature raised linearly with respect to time. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results shown graphically and in table form. It is found that velocity and microrotation influenced appreciatively with parameters like radiation, magnetic, chemical reaction and coupling numbers. It is also noted that microrotation highly influenced by the magnetic parameters. The effects of some… More >

  • Open Access

    ARTICLE

    MHD UNSTEADY FLOW OF A WILLIAMSON NANOFLUID IN A VERTICAL POROUS SPACE WITH OSCILLATING WALL TEMPERATURE

    D. Lourdu Immaculatea , R. Muthurajb,*, Anant Kant Shuklac, S. Srinivasd

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-14, 2016, DOI:10.5098/hmt.7.12

    Abstract This article aims to examine the MHD unsteady flow of Williamson nanofluid in a vertical channel filled with a porous material and oscillating wall temperature. The modeling of this problem is transformed to ordinary differential equations by collecting the non-periodic and periodic terms and then series solutions are obtained by using a powerful method known as the homotopy analysis method (HAM). The influence of involved parameters on heat and mass transfer characteristics of the fluid flow is computed and presented graphically. Further, variations on volume flow rate, coefficient of skin friction, heat transfer rate and mass transfer rate are also… More >

  • Open Access

    ARTICLE

    UNSTEADY HYDROMAGNETIC HEAT AND MASS TRANSFER NATURAL CONVECTION FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH HALL CURRENT AND ROTATION IN THE PRESENCE OF THERMAL AND MASS DIFFUSIONS

    J. K. Singha,*, N. Joshia , S. G. Beguma, C. T. Srinivasab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-12, 2016, DOI:10.5098/hmt.7.24

    Abstract In the present analytical study, we have considered unsteady hydromagnetic heat and mass transfer natural convection flow of an electrically conducting, heat absorbing and chemically reacting fluid past an exponentially accelerated vertical plate in a uniform porous medium taking Hall current and rotation into account. The species concentration near the plate is considered to be varies linearly with time. Two particular cases for plate temperature are considered i.e. (i) plate temperature is uniform and (ii) plate temperature varies linearly with time and after some time it is maintained at uniform temperature. The coupled partial differential equations governing the fluid flow… More >

  • Open Access

    ARTICLE

    NON-SIMILAR SOLUTION OF A STEADY COMPRESSIBLE BOUNDARY LAYER FLOW OVER A THIN CYLINDER

    S.V. Subhashinia,* , Nancy Samuelb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-7, 2016, DOI:10.5098/hmt.7.29

    Abstract The aim of this paper is to present non-similar solutions of a steady laminar compressible boundary layer flow past a long thin circular cylinder including the effects of wall enthalpy and surface mass transfer. The governing equations along with the boundary conditions are first converted into dimensionless form by a non-similar transformation, and then the resulting system of coupled non-linear partial differential equations is solved by an implicit finite difference scheme in combination with the quasi-linearization technique. The increase in the value of power law variation of viscosity causes an increase in the boundary layer thicknesses of both the velocity… More >

  • Open Access

    ARTICLE

    UNSTEADY FLOW AND HEAT TRANSFER OF UCM FLUID IN A POROUS CHANNEL WITH VARIABLE THERMAL CONDUCTIVITY AND ION SLIP EFFECTS

    Odelu Ojjela*, K. Pravin Kashyap, N. Naresh Kuma, Samir Kumar Das

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.32

    Abstract This article presents an unsteady incompressible Upper Convected Maxwell (UCM) fluid flow with temperature dependent thermal conductivity between parallel porous plates which are maintained at different temperatures varying periodically with time. Assume that there is a periodic suction and injection at the upper and lower plates respectively. The governing partial differential equations are reduced to non linear ordinary differential equations by using similarity transformations and the solution is obtained using differential transform method. The effects of various fluid and geometric parameters on the velocity components, temperature distribution and skin friction are discussed in detail through graphs. More >

  • Open Access

    ARTICLE

    EFFECT OF CHEMICAL REACTION AND RADIATION ON UNSTEADY CONVECTIVE HEAT AND MASS TRANSFER FLOW OF A VISCOUS FLUID IN A VERTICAL WAVY CHANNEL WITH OSCILLATORY FLUX AND HEAT SOURCES

    P.V.S. Kamalakara,*, R. Raghavender Raoa, D.R.V. Prasada Raob

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.2

    Abstract In this paper we discuss the effect of chemical reaction and thermal radiation on unsteady free convective heat and mass transfer flow through a porous medium in a vertical wavy channel. The unsteadiness in the flow is due to the oscillatory flux in the flow region. The coupled equations governing the flow, heat and mass transfer have been solved by using a perturbation technique with the slope  of the wavy wall as the perturbation parameter. The expression for the velocity, the temperature, the concentration, the rate of heat and mass transfer are derived and are analyzed for different variations… More >

  • Open Access

    ARTICLE

    A New Distribution Method for Wet Steam Injection Optimization

    Jingjing Gao, Xingkai Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 109-127, 2024, DOI:10.32604/fdmp.2023.030106

    Abstract A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam “stimulation” methods for enhanced oil recovery. The new distribution system consists of a swirler, spiral dividing baffles, and critical flow nozzles. Numerical simulations are used to analyze the flow-field and degree of steam homogeneity obtained with such an approach. The results indicate that a higher inlet pressure leads to better results. Additionally, the internal flow field becomes more stable, and the deviation from an even distribution… More >

  • Open Access

    VIEWPOINT

    Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics

    AMGAD M. RABIE*

    BIOCELL, Vol.47, No.10, pp. 2133-2139, 2023, DOI:10.32604/biocell.2023.030057

    Abstract Despite the global decline in the severity of the coronavirus disease 2019 (COVID-19) cases, the disease still represents a major concern to the relevant scientific and medical communities. The primary concern of drug scientists, virologists, and other concerned specialists in this respect is to find ready-to-use suitable and potent anticoronaviral therapies that are broadly effective against the different species/strains of the coronaviruses in general, not only against the current and previous coronaviruses (e.g., the recently-appeared severe acute respiratory syndrome coronavirus 2 “SARS-CoV-2”), i.e., effective antiviral agents for treatment and/or prophylaxis of any coronaviral infections, including those of the coming ones… More > Graphic Abstract

    Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09095

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is proposed in this paper, which… More >

Displaying 21-30 on page 3 of 291. Per Page