Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Spatio-Temporal Heterogeneity Data Accuracy Detection Method Fused by GCN and TCN

    Tao Liu1, Kejia Zhang1,*, Jingsong Yin1, Yan Zhang1, Zihao Mu1, Chunsheng Li1, Yanan Hu2

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2563-2582, 2023, DOI:10.32604/csse.2023.041228

    Abstract Spatio-temporal heterogeneous data is the database for decision-making in many fields, and checking its accuracy can provide data support for making decisions. Due to the randomness, complexity, global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions, traditional detection methods can not guarantee both detection speed and accuracy. Therefore, this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks. Firstly, the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the… More >

  • Open Access

    ARTICLE

    TC-Net: A Modest & Lightweight Emotion Recognition System Using Temporal Convolution Network

    Muhammad Ishaq1, Mustaqeem Khan1,2, Soonil Kwon1,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3355-3369, 2023, DOI:10.32604/csse.2023.037373

    Abstract Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines. Speech Emotion Recognition (SER) is one of the critical sources for human evaluation, which is applicable in many real-world applications such as healthcare, call centers, robotics, safety, and virtual reality. This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker’s emotional state. The authors designed a Temporal Convolutional Network (TCN) core block to recognize long-term dependencies in speech signals and then feed these temporal cues to a dense network… More >

  • Open Access

    ARTICLE

    Oral English Speech Recognition Based on Enhanced Temporal Convolutional Network

    Hao Wu1,*, Arun Kumar Sangaiah2

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 121-132, 2021, DOI:10.32604/iasc.2021.016457

    Abstract In oral English teaching in China, teachers usually improve students’ pronunciation by their subjective judgment. Even to the same student, the teacher gives different suggestions at different times. Students’ oral pronunciation features can be obtained from the reconstructed acoustic and natural language features of speech audio, but the task is complicated due to the embedding of multimodal sentences. To solve this problem, this paper proposes an English speech recognition based on enhanced temporal convolution network. Firstly, a suitable UNet network model is designed to extract the noise of speech signal and achieve the purpose of speech enhancement. Secondly, a network… More >

Displaying 1-10 on page 1 of 3. Per Page