Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (215)
  • Open Access

    ARTICLE

    Dynamic Intelligent Supply-Demand Adaptation Model Towards Intelligent Cloud Manufacturing

    Yanfei Sun1, Feng Qiao2, Wei Wang1, Bin Xu1, Jianming Zhu1, Romany Fouad Mansour3, Jin Qi1,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2825-2843, 2022, DOI:10.32604/cmc.2022.026574 - 29 March 2022

    Abstract As a new mode and means of smart manufacturing, smart cloud manufacturing (SCM) faces great challenges in massive supply and demand, dynamic resource collaboration and intelligent adaptation. To address the problem, this paper proposes an SCM-oriented dynamic supply-demand (S-D) intelligent adaptation model for massive manufacturing services. In this model, a collaborative network model is established based on the properties of both the supply-demand and their relationships; in addition, an algorithm based on deep graph clustering (DGC) and aligned sampling (AS) is used to divide and conquer the large adaptation domain to solve the problem of… More >

  • Open Access

    ARTICLE

    Detection of Lung Nodules on X-ray Using Transfer Learning and Manual Features

    Imran Arshad Choudhry*, Adnan N. Qureshi

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1445-1463, 2022, DOI:10.32604/cmc.2022.025208 - 24 February 2022

    Abstract The well-established mortality rates due to lung cancers, scarcity of radiology experts and inter-observer variability underpin the dire need for robust and accurate computer aided diagnostics to provide a second opinion. To this end, we propose a feature grafting approach to classify lung cancer images from publicly available National Institute of Health (NIH) chest X-Ray dataset comprised of 30,805 unique patients. The performance of transfer learning with pre-trained VGG and Inception models is evaluated in comparison against manually extracted radiomics features added to convolutional neural network using custom layer. For classification with both approaches, Support… More >

  • Open Access

    ARTICLE

    A Lightweight CNN Based on Transfer Learning for COVID-19 Diagnosis

    Xiaorui Zhang1,2,3,*, Jie Zhou2, Wei Sun3,4, Sunil Kumar Jha5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1123-1137, 2022, DOI:10.32604/cmc.2022.024589 - 24 February 2022

    Abstract The key to preventing the COVID-19 is to diagnose patients quickly and accurately. Studies have shown that using Convolutional Neural Networks (CNN) to analyze chest Computed Tomography (CT) images is helpful for timely COVID-19 diagnosis. However, personal privacy issues, public chest CT data sets are relatively few, which has limited CNN's application to COVID-19 diagnosis. Also, many CNNs have complex structures and massive parameters. Even if equipped with the dedicated Graphics Processing Unit (GPU) for acceleration, it still takes a long time, which is not conductive to widespread application. To solve above problems, this paper… More >

  • Open Access

    ARTICLE

    Rice Leaves Disease Diagnose Empowered with Transfer Learning

    Nouh Sabri Elmitwally1,2, Maria Tariq3,4, Muhammad Adnan Khan5,*, Munir Ahmad3, Sagheer Abbas3, Fahad Mazaed Alotaibi6

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1001-1014, 2022, DOI:10.32604/csse.2022.022017 - 08 February 2022

    Abstract In the agricultural industry, rice infections have resulted in significant productivity and economic losses. The infections must be recognized early on to regulate and mitigate the effects of the attacks. Early diagnosis of disease severity effects or incidence can preserve production from quantitative and qualitative losses, reduce pesticide use, and boost ta country’s economy. Assessing the health of a rice plant through its leaves is usually done as a manual ocular exercise. In this manuscript, three rice plant diseases: Bacterial leaf blight, Brown spot, and Leaf smut, were identified using the Alexnet Model. Our research More >

  • Open Access

    ARTICLE

    Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy

    Qaisar Abbas1,*, Mostafa E. A. Ibrahim1,2, Abdul Rauf Baig1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4573-4590, 2022, DOI:10.32604/cmc.2022.023670 - 14 January 2022

    Abstract Diabetic retinopathy (DR) diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features. This task is very difficult for ophthalmologists and time-consuming. Therefore, many computer-aided diagnosis (CAD) systems were developed to automate this screening process of DR. In this paper, a CAD-DR system is proposed based on preprocessing and a pre-train transfer learning-based convolutional neural network (PCNN) to recognize the five stages of DR through retinal fundus images. To develop this CAD-DR system, a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Algorithm for Multi-Type Defects Detection in Solar Cells with Aerial EL Images for Photovoltaic Plants

    Wuqin Tang, Qiang Yang, Wenjun Yan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1423-1439, 2022, DOI:10.32604/cmes.2022.018313 - 30 December 2021

    Abstract Defects detection with Electroluminescence (EL) image for photovoltaic (PV) module has become a standard test procedure during the process of production, installation, and operation of solar modules. There are some typical defects types, such as crack, finger interruption, that can be recognized with high accuracy. However, due to the complexity of EL images and the limitation of the dataset, it is hard to label all types of defects during the inspection process. The unknown or unlabeled create significant difficulties in the practical application of the automatic defects detection technique. To address the problem, we proposed… More >

  • Open Access

    ARTICLE

    Transferable Features from 1D-Convolutional Network for Industrial Malware Classification

    Liwei Wang1,2,3, Jiankun Sun1,2,3, Xiong Luo1,2,3,*, Xi Yang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 1003-1016, 2022, DOI:10.32604/cmes.2022.018492 - 13 December 2021

    Abstract With the development of information technology, malware threats to the industrial system have become an emergent issue, since various industrial infrastructures have been deeply integrated into our modern works and lives. To identify and classify new malware variants, different types of deep learning models have been widely explored recently. Generally, sufficient data is usually required to achieve a well-trained deep learning classifier with satisfactory generalization ability. However, in current practical applications, an ample supply of data is absent in most specific industrial malware detection scenarios. Transfer learning as an effective approach can be used to More >

  • Open Access

    ARTICLE

    Diabetic Retinopathy Detection Using Classical-Quantum Transfer Learning Approach and Probability Model

    Amna Mir1, Umer Yasin1, Salman Naeem Khan1, Atifa Athar3,*, Riffat Jabeen2, Sehrish Aslam1

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3733-3746, 2022, DOI:10.32604/cmc.2022.022524 - 07 December 2021

    Abstract Diabetic Retinopathy (DR) is a common complication of diabetes mellitus that causes lesions on the retina that affect vision. Late detection of DR can lead to irreversible blindness. The manual diagnosis process of DR retina fundus images by ophthalmologists is time consuming and costly. While, Classical Transfer learning models are extensively used for computer aided detection of DR; however, their maintenance costs limits detection performance rate. Therefore, Quantum Transfer learning is a better option to address this problem in an optimized manner. The significance of Hybrid quantum transfer learning approach includes that it performs heuristically.… More >

  • Open Access

    ARTICLE

    An Automated Real-Time Face Mask Detection System Using Transfer Learning with Faster-RCNN in the Era of the COVID-19 Pandemic

    Maha Farouk S. Sabir1, Irfan Mehmood2,*, Wafaa Adnan Alsaggaf3, Enas Fawai Khairullah3, Samar Alhuraiji4, Ahmed S. Alghamdi5, Ahmed A. Abd El-Latif6

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 4151-4166, 2022, DOI:10.32604/cmc.2022.017865 - 07 December 2021

    Abstract Today, due to the pandemic of COVID-19 the entire world is facing a serious health crisis. According to the World Health Organization (WHO), people in public places should wear a face mask to control the rapid transmission of COVID-19. The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places. Therefore, it is very difficult to manually monitor people in overcrowded areas. This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places, by presenting an automated system that automatically… More >

  • Open Access

    ARTICLE

    Hypo-Driver: A Multiview Driver Fatigue and Distraction Level Detection System

    Qaisar Abbas1,*, Mostafa E.A. Ibrahim1,2, Shakir Khan1, Abdul Rauf Baig1

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1999-2007, 2022, DOI:10.32604/cmc.2022.022553 - 03 November 2021

    Abstract Traffic accidents are caused by driver fatigue or distraction in many cases. To prevent accidents, several low-cost hypovigilance (hypo-V) systems were developed in the past based on a multimodal-hybrid (physiological and behavioral) feature set. Similarly in this paper, real-time driver inattention and fatigue (Hypo-Driver) detection system is proposed through multi-view cameras and biosignal sensors to extract hybrid features. The considered features are derived from non-intrusive sensors that are related to the changes in driving behavior and visual facial expressions. To get enhanced visual facial features in uncontrolled environment, three cameras are deployed on multiview points… More >

Displaying 161-170 on page 17 of 215. Per Page