Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (170)
  • Open Access

    ARTICLE

    LiSBOA: Enhancing LiDAR-Based Wind Turbine Wake and Turbulence Characterization in Complex Terrain

    Ahmad S. Azzahrani*

    Energy Engineering, Vol.122, No.11, pp. 4703-4713, 2025, DOI:10.32604/ee.2025.067398 - 27 October 2025

    Abstract The Light Detection and Ranging (LiDAR) data analysis method has emerged as a powerful and versatile tool for characterizing atmospheric conditions and modeling light propagation through various media. In the context of renewable energy, particularly wind energy, LiDAR is increasingly utilized to analyze wind flow, turbine wake effects, and turbulence in complex terrains. This study focuses on advancing LiDAR data interpretation through the development and application of the LiDAR Statistical Barnes Objective Analysis (LiSBOA) method. LiSBOA enhances the capacity of scanning LiDAR systems by enabling more precise optimization of scan configurations and improving the retrieval… More >

  • Open Access

    ARTICLE

    Optimized Foil-Based Impeller Design for Enhanced Power Recovery in Pump-as-Turbine Applications

    Ali Abdulshaheed1,*, Faizal Mustapha1, Mohd Anuar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2289-2304, 2025, DOI:10.32604/fdmp.2025.066983 - 30 September 2025

    Abstract A pump operating as a turbine (PAT) is a type of hydraulic machine capable of functioning both as a pump and as a turbine by reversing the flow direction. The pump-as-turbine (PAT) approach presents an effective method of hydropower generation, particularly suitable for addressing the increasing global energy demands in rural and remote areas. In addition to its adaptability, PAT-based micro-hydropower systems typically incur lower operating costs than conventional hydrodynamic turbines, despite requiring higher initial investment. Recent research has focused on integrating PATs into pipe distribution systems to harness untapped hydraulic energy. This study presents… More >

  • Open Access

    ARTICLE

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

    Bassel Weiss1, Segundo Esteban2,*, Matilde Santos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3387-3418, 2025, DOI:10.32604/cmes.2025.070070 - 30 September 2025

    Abstract Anomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into… More > Graphic Abstract

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

  • Open Access

    REVIEW

    A Review of Computational Fluid Dynamics Techniques and Methodologies in Vertical Axis Wind Turbine Development

    Ahmad Fazlizan1,*, Wan Khairul Muzammil2, Najm Addin Al-Khawlani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1371-1437, 2025, DOI:10.32604/cmes.2025.067854 - 31 August 2025

    Abstract This review provides a comprehensive and systematic examination of Computational Fluid Dynamics (CFD) techniques and methodologies applied to the development of Vertical Axis Wind Turbines (VAWTs). Although VAWTs offer significant advantages for urban wind applications, such as omnidirectional wind capture and a compact, ground-accessible design, they face substantial aerodynamic challenges, including dynamic stall, blade–wake interactions, and continuously varying angles of attack throughout their rotation. The review critically evaluates how CFD has been leveraged to address these challenges, detailing the modelling frameworks, simulation setups, mesh strategies, turbulence models, and boundary condition treatments adopted in the literature.… More >

  • Open Access

    ARTICLE

    A Time-Domain Irregular Wave Model with Different Random Numbers for FOWT Support Structures

    Shen-Haw Ju*, Yi-Chen Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1631-1654, 2025, DOI:10.32604/cmes.2025.067679 - 31 August 2025

    Abstract This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform (IFFT). Considering the substantial displacement effects that Floating Offshore Wind Turbine (FOWT) support structures undergo when subjected to wave loads, the time-domain wave method is more suitable, while the frequency-domain method requiring IFFT cannot be used for moving bodies. Nonetheless, the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle. Thus, the paper incorporates various numerical schemes, including parallel computing and extrapolation of wave forces… More >

  • Open Access

    ARTICLE

    Seismic Vibration Control of Wind Turbine Towers with Bidirectional Tuned Bellow Liquid Column Damper

    Xiwei Wang1, Wanrun Li1,2,3,*, Wenhai Zhao1, Yining Wang1, Yongfeng Du1,2,3

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1241-1263, 2025, DOI:10.32604/sdhm.2025.063736 - 05 September 2025

    Abstract To address the vibration issues of wind turbine towers, this paper proposes a bidirectional tuned bellow liquid column damper (BTBLCD). The configuration of the proposed BTBLCD is first described in detail, and its energy dissipation mechanism is derived through theoretical analysis. A refined dynamic model of the wind turbine tower equipped with the BTBLCD is then developed. The vibration energy dissipation performance of the BTBLCD in multiple directions is evaluated through two-way fluid-structure coupling numerical simulations. Finally, a 1/10 scaled model of the wind turbine tower is constructed, and the energy dissipation performance of the… More >

  • Open Access

    ARTICLE

    Investigating Techniques to Optimise the Layout of Turbines in a Windfarm Using a Quantum Computer

    James Hancock*, Matthew Craven, Craig McNeile, Davide Vadacchino

    Journal of Quantum Computing, Vol.7, pp. 55-79, 2025, DOI:10.32604/jqc.2025.068127 - 11 August 2025

    Abstract This paper investigates Windfarm Layout Optimization (WFLO), where we formulate turbine placement considering wake effects as a Quadratic Unconstrained Binary Optimization (QUBO) problem. Wind energy plays a critical role in the transition toward sustainable power systems, but the optimal placement of turbines remains a challenging combinatorial problem due to complex wake interactions. With recent advances in quantum computing, there is growing interest in exploring whether hybrid quantum-classical methods can provide advantages for such computationally intensive tasks. We investigate solving the resulting QUBO problem using the Variational Quantum Eigensolver (VQE) implemented on Qiskit’s quantum computer simulator, More >

  • Open Access

    REVIEW

    A Review of Methods for “Pump as Turbine” (PAT) Performance Prediction and Optimal Design

    Xiao Sun1, Huifan Huang1, Yanjuan Zhao2,*, Lianghuai Tong3,*, Haibin Lin3, Yuliang Zhang4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1261-1298, 2025, DOI:10.32604/fdmp.2025.064329 - 30 June 2025

    Abstract The reverse operation of existing centrifugal pumps, commonly referred to as “Pump as Turbine” (PAT), is a key approach for recovering liquid pressure energy. As a type of hydraulic machinery characterized by a simple structure and user-friendly operation, PAT holds significant promise for application in industrial waste energy recovery systems. This paper reviews recent advancements in this field, with a focus on pump type selection, performance prediction, and optimization design. First, the advantages of various prototype pumps, including centrifugal, axial-flow, mixed-flow, screw, and plunger pumps, are examined in specific application scenarios while analyzing their suitability… More >

  • Open Access

    ARTICLE

    A Partitioned Yaw Control Algorithm for Wind Farms Using Dynamic Wake Modeling

    Yinguo Yang1, Lifu Ding2,*, Yang Liu1, Bingchen Wang2, Weihua Wang1, Ying Chen2

    Energy Engineering, Vol.122, No.7, pp. 2571-2587, 2025, DOI:10.32604/ee.2025.065716 - 27 June 2025

    Abstract This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn (FLOW Redirection and Induction Dynamics) dynamic wake model. First, the impact of wakes on turbine effective wind speed is analyzed, leading to a quantitative method for assessing wake interactions. Based on these interactions, a partitioning method divides the wind farm into smaller, computationally manageable zones. Subsequently, a heuristic control algorithm is developed for yaw optimization within each partition, reducing the overall computational burden associated with multi-turbine optimization. The algorithm’s effectiveness is evaluated through case More >

  • Open Access

    ARTICLE

    Optimization of Guide Vane Geometry in a Pump-as-Turbine through an Orthogonal Test Approach

    Fengxia Shi1,2, Pengcheng Wang1,*, Haonan Zhan1, Xiangyun Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1221-1238, 2025, DOI:10.32604/fdmp.2025.062244 - 30 May 2025

    Abstract To investigate the impact of guide vane geometry—specifically, outlet angle, blade count, and radial height—on the performance of a Pump as Turbine (PAT), radial guide vanes were introduced upstream of the impeller in an IS80-50-315 low-specific-speed centrifugal PAT. Using an orthogonal test design, numerical simulations were conducted on 16 different PAT configurations, and the influence of vane geometry on performance was analyzed through a range analysis to determine the optimal parameter combinations. The results indicate that the number of guide vane blades significantly affects both the hydraulic efficiency and water head of the PAT under More >

Displaying 11-20 on page 2 of 170. Per Page