Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (166)
  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Blades Based on Multi-Sensor Weighted Alignment Fusion in Noisy Environments

    Lifu He1, Zhongchu Huang1, Haidong Shao2,*, Zhangbo Hu1, Yuting Wang1, Jie Mei1, Xiaofei Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073227 - 12 January 2026

    Abstract Deep learning-based wind turbine blade fault diagnosis has been widely applied due to its advantages in end-to-end feature extraction. However, several challenges remain. First, signal noise collected during blade operation masks fault features, severely impairing the fault diagnosis performance of deep learning models. Second, current blade fault diagnosis often relies on single-sensor data, resulting in limited monitoring dimensions and ability to comprehensively capture complex fault states. To address these issues, a multi-sensor fusion-based wind turbine blade fault diagnosis method is proposed. Specifically, a CNN-Transformer Coupled Feature Learning Architecture is constructed to enhance the ability to More >

  • Open Access

    REVIEW

    A Review on Fault Diagnosis Methods of Gas Turbine

    Tao Zhang1,*, Hailun Wang1, Tianyue Wang1, Tian Tian2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072696 - 12 January 2026

    Abstract The critical components of gas turbines suffer from prolonged exposure to factors such as thermal oxidation, mechanical wear, and airflow disturbances during prolonged operation. These conditions can lead to a series of issues, including mechanical faults, air path malfunctions, and combustion irregularities. Traditional model-based approaches face inherent limitations due to their inability to handle nonlinear problems, natural factors, measurement uncertainties, fault coupling, and implementation challenges. The development of artificial intelligence algorithms has provided an effective solution to these issues, sparking extensive research into data-driven fault diagnosis methodologies. The review mechanism involved searching IEEE Xplore, ScienceDirect,… More >

  • Open Access

    ARTICLE

    Multi-Objective Structural Optimization of Composite Wind Turbine Blade Using a Novel Hybrid Approach of Artificial Bee Colony Algorithm Based on the Stochastic Method

    Ramazan Özkan1,2, Mustafa Serdar Genç1,3,*, İlker Kayali1,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3349-3380, 2025, DOI:10.32604/cmes.2025.072519 - 23 December 2025

    Abstract The optimization of turbine blades is crucial in improving the efficiency of wind energy systems and developing clean energy production models. This paper presented a novel approach to the structural design of small-scale turbine blades using the Artificial Bee Colony (ABC) Algorithm based on the stochastic method to optimize both mass and cost (objective functions). The study used computational fluid dynamics (CFD) and structural analysis to consider the fluid-structure interaction. The optimization algorithm defined several variables: structural constraints, the type of composite material, and the number of composite layers to form a mathematical model. The More >

  • Open Access

    ARTICLE

    Fluid-Dynamic Loads on Turbine Blades in Downburst Wind Fields

    Yan Wang1,2,*, Fuqiang Zhang1, Long An1, Bo Wang1, Xueya Yang1, Jie Jin3,4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2651-2671, 2025, DOI:10.32604/fdmp.2025.070122 - 01 December 2025

    Abstract A downburst is a strong downdraft generated by intense thunderstorm clouds, producing radially divergent and highly destructive winds near the ground. Its characteristic scales are expressed through random variations in jet height, velocity, and diameter during an event. In this study, a reduced-scale parked wind turbine is exposed to downburst wind fields to investigate the resulting extreme wind loads. The analysis emphasizes both the flow structure of downbursts and the variations of surface wind pressure on turbine blades under different jet parameters. Results show that increasing jet velocity markedly enhances the maximum horizontal wind speed,… More > Graphic Abstract

    Fluid-Dynamic Loads on Turbine Blades in Downburst Wind Fields

  • Open Access

    ARTICLE

    A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types

    Erping Song1,*, Zipin Yao2

    Energy Engineering, Vol.122, No.12, pp. 5129-5147, 2025, DOI:10.32604/ee.2025.063827 - 27 November 2025

    Abstract Wind farm layout optimization is a critical challenge in renewable energy development, especially in regions with complex terrain. Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm, where the wake effect, wind speed, types of wind turbines, etc., have an impact on the output power of the wind farm. To solve the optimization problem of wind farm layout under complex terrain conditions, this paper proposes wind turbine layout optimization using different types of wind turbines, the aim is to reduce the influence of the wake effect… More >

  • Open Access

    ARTICLE

    Cavitation Performance Analysis of Tip Clearance in a Bulb-Type Hydro Turbine

    Feng Zhou1,2, Qifei Li1,*, Lu Xin1, Shiang Zhang3, Yang Liu1, Ming Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 411-429, 2025, DOI:10.32604/cmes.2025.069639 - 30 October 2025

    Abstract Bulb-type hydro turbines are commonly used in small- to medium-scale hydropower stations due to their compact design and adaptability to low-head conditions. However, long-term operation often results in wear at the runner rim, increasing tip clearance and triggering leakage flow and cavitation. These effects reduce hydraulic efficiency and accelerate blade surface erosion, posing serious risks to unit safety and operational stability. This study investigates the influence of tip clearance on cavitation performance in a 24 MW prototype bulb turbine. A three-dimensional numerical model is developed to simulate various operating conditions with different tip clearance values… More >

  • Open Access

    ARTICLE

    LiSBOA: Enhancing LiDAR-Based Wind Turbine Wake and Turbulence Characterization in Complex Terrain

    Ahmad S. Azzahrani*

    Energy Engineering, Vol.122, No.11, pp. 4703-4713, 2025, DOI:10.32604/ee.2025.067398 - 27 October 2025

    Abstract The Light Detection and Ranging (LiDAR) data analysis method has emerged as a powerful and versatile tool for characterizing atmospheric conditions and modeling light propagation through various media. In the context of renewable energy, particularly wind energy, LiDAR is increasingly utilized to analyze wind flow, turbine wake effects, and turbulence in complex terrains. This study focuses on advancing LiDAR data interpretation through the development and application of the LiDAR Statistical Barnes Objective Analysis (LiSBOA) method. LiSBOA enhances the capacity of scanning LiDAR systems by enabling more precise optimization of scan configurations and improving the retrieval… More >

  • Open Access

    ARTICLE

    Optimized Foil-Based Impeller Design for Enhanced Power Recovery in Pump-as-Turbine Applications

    Ali Abdulshaheed1,*, Faizal Mustapha1, Mohd Anuar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2289-2304, 2025, DOI:10.32604/fdmp.2025.066983 - 30 September 2025

    Abstract A pump operating as a turbine (PAT) is a type of hydraulic machine capable of functioning both as a pump and as a turbine by reversing the flow direction. The pump-as-turbine (PAT) approach presents an effective method of hydropower generation, particularly suitable for addressing the increasing global energy demands in rural and remote areas. In addition to its adaptability, PAT-based micro-hydropower systems typically incur lower operating costs than conventional hydrodynamic turbines, despite requiring higher initial investment. Recent research has focused on integrating PATs into pipe distribution systems to harness untapped hydraulic energy. This study presents… More >

  • Open Access

    ARTICLE

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

    Bassel Weiss1, Segundo Esteban2,*, Matilde Santos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3387-3418, 2025, DOI:10.32604/cmes.2025.070070 - 30 September 2025

    Abstract Anomaly detection in wind turbines involves emphasizing its ability to improve operational efficiency, reduce maintenance costs, extend their lifespan, and enhance reliability in the wind energy sector. This is particularly necessary in offshore wind, currently one of the most critical assets for achieving sustainable energy generation goals, due to the harsh marine environment and the difficulty of maintenance tasks. To address this problem, this work proposes a data-driven methodology for detecting power generation anomalies in offshore wind turbines, using normalized and linearized operational data. The proposed framework transforms heterogeneous wind speed and power measurements into… More > Graphic Abstract

    Offshore Wind Turbines Anomalies Detection Based on a New Normalized Power Index

  • Open Access

    REVIEW

    A Review of Computational Fluid Dynamics Techniques and Methodologies in Vertical Axis Wind Turbine Development

    Ahmad Fazlizan1,*, Wan Khairul Muzammil2, Najm Addin Al-Khawlani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1371-1437, 2025, DOI:10.32604/cmes.2025.067854 - 31 August 2025

    Abstract This review provides a comprehensive and systematic examination of Computational Fluid Dynamics (CFD) techniques and methodologies applied to the development of Vertical Axis Wind Turbines (VAWTs). Although VAWTs offer significant advantages for urban wind applications, such as omnidirectional wind capture and a compact, ground-accessible design, they face substantial aerodynamic challenges, including dynamic stall, blade–wake interactions, and continuously varying angles of attack throughout their rotation. The review critically evaluates how CFD has been leveraged to address these challenges, detailing the modelling frameworks, simulation setups, mesh strategies, turbulence models, and boundary condition treatments adopted in the literature.… More >

Displaying 1-10 on page 1 of 166. Per Page