Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    A Numerical Study of the Double Diffusivity with Convective and Radiative Turbulent Flow in a Greenhouse with Humidity Sources

    J. Serrano-Arellano1, M.I. Hernández-López1, J. L. Chávez-Servín2, E. V. Macias-Melo3, K. M. Aguilar-Castro3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1741-1765, 2025, DOI:10.32604/fhmt.2025.069560 - 31 December 2025

    Abstract A numerical study analyzed double diffusion caused by convective and radiative heat transfer in a greenhouse with and without internal humidity sources. Two cases were examined: one considering temperature and mass concentration gradients on vertical walls and another incorporating internal humidity sources, enhancing convective and diffusive flows. Four configurations were analyzed by varying the length of the greenhouse, and the Rayleigh number was calculated over a range from 2.29 × 1010 to 6.07 × 1012. Simulations modeled the greenhouse interior six times a day (8:00 a.m. to 7:00 p.m.), accounting for external temperature, humidity, and solar More > Graphic Abstract

    A Numerical Study of the Double Diffusivity with Convective and Radiative Turbulent Flow in a Greenhouse with Humidity Sources

  • Open Access

    ARTICLE

    Shock-Boundary Layer Interaction in Transonic Flows: Evaluation of Grid Resolution and Turbulence Modeling Effects on Numerical Predictions

    Mehmet Numan Kaya*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 327-343, 2025, DOI:10.32604/cmes.2025.072000 - 30 October 2025

    Abstract This study investigates the influence of mesh resolution and turbulence model selection on the accuracy of numerical simulations for transonic flow, with particular emphasis on shock-boundary layer interaction phenomena. Accurate prediction of such flows is notoriously difficult due to the sensitivity to near-wall resolution, global mesh density, and turbulence model assumptions, and this problem motivates the present work. Two solvers were employed, rhoCentralFoam (unsteady) and TSLAeroFoam (steady-state), both are compressible and density-based and implemented within the OpenFOAM framework. The investigation focuses on three different non-dimensional wall distance (y+) values of 1, 2.5 and 5, each implemented… More >

  • Open Access

    ARTICLE

    Optimization-Based Correction of Turbulence Models for Flow Prediction in Control Valves

    Shuxun Li1,2, Yuhao Tian1,2,*, Guolong Deng1,2, Wei Li1,2, Yinggang Hu1,2, Xiaoya Wen1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1809-1837, 2025, DOI:10.32604/fdmp.2025.065877 - 12 September 2025

    Abstract The conventional Shear Stress Transport (SST) kω turbulence model often exhibits substantial inaccuracies when applied to the prediction of flow behavior in complex regions within axial flow control valves. To enhance its predictive fidelity for internal flow fields, this study introduces a novel calibration framework that integrates an artificial neural network (ANN) surrogate model with a particle swarm optimization (PSO) algorithm. In particular, an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space. For each sample, numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,… More >

  • Open Access

    REVIEW

    A Review of Computational Fluid Dynamics Techniques and Methodologies in Vertical Axis Wind Turbine Development

    Ahmad Fazlizan1,*, Wan Khairul Muzammil2, Najm Addin Al-Khawlani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1371-1437, 2025, DOI:10.32604/cmes.2025.067854 - 31 August 2025

    Abstract This review provides a comprehensive and systematic examination of Computational Fluid Dynamics (CFD) techniques and methodologies applied to the development of Vertical Axis Wind Turbines (VAWTs). Although VAWTs offer significant advantages for urban wind applications, such as omnidirectional wind capture and a compact, ground-accessible design, they face substantial aerodynamic challenges, including dynamic stall, blade–wake interactions, and continuously varying angles of attack throughout their rotation. The review critically evaluates how CFD has been leveraged to address these challenges, detailing the modelling frameworks, simulation setups, mesh strategies, turbulence models, and boundary condition treatments adopted in the literature.… More >

  • Open Access

    PROCEEDINGS

    Topology Optimization for Conjugate Heat Transfer Problems Based on the k-omega Turbulence Model

    Ritian Ji1, Zhiguo Qu1,*, Hui Wang1, Binbin Jiao2, Yuxin Ye2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012210

    Abstract In this manuscript, a finite volume discrete topology optimization method based on the continuous adjoint method is proposed to simulate turbulent flow using the k-omega turbulence model for solving the topology optimization problem of conjugate heat transfer at high Reynolds number. The manuscript simulates the conjugate turbulent convective heat transfer problem at high Reynolds number with a set of Reynolds-Averaged Navier-Stokes (RANS) equations coupled with energy transport equations and control equations of the k-omega turbulence model, and implements the methodology by using the variable density method, interpolates the material values of thermal conductivity, heat capacity,… More >

  • Open Access

    ARTICLE

    Analysis of Convective Heat Exchanges and Fluid Dynamics in the Air Gap of a Discoid Technology Rotary Machine

    Abdellatif El Hannaoui1,*, Rachid Boutarfa1, Chadia Haidar2

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 733-746, 2024, DOI:10.32604/fhmt.2024.050520 - 11 July 2024

    Abstract The proposed work focuses on the in-depth study of convective heat transfer in the unconfined air gap of a discoidal rotor-stator system. The rotary cooling mechanism is achieved by the injection of two air jets, while the cavity geometry is characterized by a dimensionless parameter G. The numerical analysis primarily concentrated on the effect of flow velocity and rotation on the heat exchange process. More precisely, the range of analysis extends from the rotational Reynolds number to , while varying the Reynolds value of the jet in a range from to . To carry out More >

  • Open Access

    ARTICLE

    Analysis of the Flow Field Characteristics Associated with the Dynamic Rock Breaking Process Induced by a Multi-Hole Combined External Rotary Bit

    Quanbin Ba1,2, Yanbao Liu1,2,*, Zhigang Zhang1,2, Wei Xiong1,2, Kai Shen1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 697-710, 2021, DOI:10.32604/fdmp.2021.014762 - 17 May 2021

    Abstract The characteristics of the flow field associated with a multi-hole combined external rotary bit have been studied by means of numerical simulation in the framework of an RNG k-ε turbulence model, and compared with the results of dedicated rock breaking drilling experiments. The numerical results show that the nozzle velocity and dynamic pressure of the nozzle decrease with an increase in the jet distance, and the axial velocity of the nozzle decays regularly with an increase in the dimensionless jet distance. Moreover, the axial velocity related to the nozzle with inclination angle 20° and 30° can More >

  • Open Access

    ARTICLE

    Laminar and Turbulent Characteristics of the Acoustic/Fluid Dynamics Interactions in a Slender Simulated Solid Rocket Motor Chamber

    Abdelkarim Hegab*, Faisal Albatati, Mohammed Algarni

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 437-468, 2021, DOI:10.32604/cmes.2021.014690 - 19 April 2021

    Abstract In this paper, analytical, computational, and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injection. Acoustic-fluid dynamic interactions across the chamber may generate intense unsteady vorticity with associated shear stresses. These stresses may cause scouring and, in turn, enhance the heat rate and erosional burning of solid propellant in a real rocket chamber. In this modelling, the unsteady propellant gasification is mimicked by steady-state flow disturbed by end-wall oscillations. The analytical approach is formulated using an asymptotic technique to reduce the full… More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF PERIODICALLY FULLY-DEVELOPED FLOW AND HEAT TRANSFER IN CHANNELS WITH PERIODIC SEMICIRCULAR TUBE

    Weiyu Zhanga , Mo Yanga,*, Yuwen Zhangb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-8, 2019, DOI:10.5098/hmt.12.18

    Abstract The periodically fully-developed flow and heat transfer in channels with periodic semi-circular tube is studied numerically by the direct numerical simulation (DNS), the large eddy simulation (LES), and the Reynolds stress model (RSM). When the Reynolds number is between 3000 and 25000, the Nusselt number obtained by the RSM is closer to the experimental results than the results obtained from other turbulence models. The nonlinear characteristics of flow and heat transfer is revealed based on the results of numerical simulation. When Reynolds number is high, the geometric structure and boundary conditions of the channel are More >

  • Open Access

    ARTICLE

    Turbulent Inlet Conditions Modeling using Large-eddy Simulations

    M.M.R. Damasceno1, J.M. Vedovoto1, A. da Silveira-Neto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.2, pp. 105-132, 2015, DOI:10.3970/cmes.2015.104.105

    Abstract Turbulence is a phenomenon which presents peculiarities when it is experimented or simulated. This occurs due to its complexity and high sensibility to the inlet conditions of the turbulent flow fields, as well as the presence of a large range of time and length scales. A simplification for this situation is obtained with the use of approximations and turbulence models. In the present work, the Largeeddy Simulations methodology was applied, aiming the modeling of the previously mentioned complexity, which consists in using a filter to resolve the large scales while the remaining scales were determined More >

Displaying 1-10 on page 1 of 23. Per Page