Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (86)
  • Open Access

    ARTICLE

    Erosion Analysis of Static Components in Slurry Pumps Based on Reverse Modeling

    Zhengjing Shen1,2,*, Fanqiang Kong1, Yu Liu1, Jilai Zeng1, Wengang Yang1, Jiangbo Wu1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 589-603, 2025, DOI:10.32604/fdmp.2024.058727 - 01 April 2025

    Abstract Erosion in slurry pumps presents a persistent challenge in industrial applications. This study examines the erosion of the static components of a 150ZJ-C42 centrifugal slurry pump, currently in operation at a beneficiation plant, under varying particle conditions. Utilizing high-precision three-dimensional reverse engineering, the pump’s flow passage geometry was reconstructed to facilitate detailed erosion analysis. Focusing on the front and rear baffles of the pump chamber, as well as the volute, erosion patterns were analyzed for different particle volume concentrations and sizes. The results reveal that the highest erosion damage consistently occurs near the volute tongue,… More > Graphic Abstract

    Erosion Analysis of Static Components in Slurry Pumps Based on Reverse Modeling

  • Open Access

    ARTICLE

    Modeling and Experimental Study of an Open Two-Phase Loop Driven by Osmotic Pressure and Capillary Force

    Hanli Bi1, Zheng Peng2, Chenpeng Liu3, Zhichao Jia1, Guoguang Li1, Yuandong Guo2, Hongxing Zhang1,*, Jianyin Miao1

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 55-70, 2025, DOI:10.32604/fhmt.2024.057933 - 26 February 2025

    Abstract As space technology advances, thermal control systems must effectively collect and dissipate heat from distributed, multi-source environments. Loop heat pipe is a highly reliable two-phase heat transfer component, but it has several limitations when addressing multi-source heat dissipation. Inspired by the transport and heat dissipation system of plants, large trees achieve stable and efficient liquid supply under the influence of two driving forces: capillary force during transpiration in the leaves (pull) and root pressure generated by osmotic pressure in the roots (push). The root pressure provides an effective liquid supply with a driving force exceeding… More >

  • Open Access

    ARTICLE

    Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks

    Xin Fan1,2, Zhenlei Fu1,2,*, Jian Shu1,2, Zuxiong Shen1,2, Yun Ge1,2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2583-2607, 2025, DOI:10.32604/cmc.2024.057695 - 17 February 2025

    Abstract Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Gas-Solid Flow Processes in an Ash Conveying Pipeline with Multiple Feeds

    Kairuo Chen1, He Wang1,*, Xiangliang Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2721-2739, 2024, DOI:10.32604/fdmp.2024.055174 - 23 December 2024

    Abstract Pneumatic conveying technology, as an efficient material transportation method, has been widely used in various industrial fields. To study the powder transportation in horizontal ash conveying pipes, this study relies on the Computational Particle Fluid Dynamics (CPFD) numerical method. The characteristics of the gas-solid two-phase flow under continuous air supply conditions are analyzed, and the effects on particle movement of factors such as feed port spacing, inlet air velocity, and the number of discharge ports are explored accordingly. The research results show that when the inlet velocity is 5 m/s, adjacent discharged particles come into More >

  • Open Access

    ARTICLE

    Melting Flow Analyzation of Radiative Riga Plate Two-Phase Nano-Fluid Across Non-Flatness Plane with Chemical Reaction

    Jupudi Lakshmi Rama Prasad1, F. Mebarek-Oudina2,*, G. Dharmaiah3, Putta Babu Rao4, H. Vaidya5

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1515-1532, 2024, DOI:10.32604/fhmt.2024.057854 - 30 October 2024

    Abstract There is a strong relationship between analytical and numerical heat transfers due to thermodynamically anticipated findings, making thermo-dynamical modeling an effective tool for estimating the ideal melting point of heat transfer. Under certain assumptions, the present study builds a mathematical model of melting heat transport nanofluid flow of chemical reactions and joule heating. Nanofluid flow is described by higher-order partial non-linear differential equations. Incorporating suitable similarity transformations and dimensionless parameters converts these controlling partial differential equations into the non-linear ordinary differential equations and resulting system of nonlinear equations is established. Plotted graphic visualizations in MATLAB More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, He Lu, Shijie Feng

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1493-1514, 2024, DOI:10.32604/fhmt.2024.055324 - 30 October 2024

    Abstract Helically coiled tube-in-tube (HCTT) heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency. HCTT heat exchangers play an important role in liquified natural gas (LNG) use and cold energy recovery. The heat transfer characteristics, pressure distribution, and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated. By comparing the simulation results of the computational model with existing experimental results, the effectiveness of the computational model is verified. The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related… More >

  • Open Access

    ARTICLE

    Assessment of Low Global Warming Potential Refrigerants for Waste Heat Recovery in Data Center with On-Chip Two-Phase Cooling Loop

    Yuming Zhao1, Jing Wang1, Bin Sun2, Zhenshang Wang1, Huashan Li2, Jiongcong Chen2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1171-1188, 2024, DOI:10.32604/fhmt.2024.054594 - 30 August 2024

    Abstract Data centers (DCs) are highly energy-intensive facilities, where about 30%–50% of the power consumed is attributable to the cooling of information technology equipment. This makes liquid cooling, especially in two-phase mode, as an alternative to air cooling for the microprocessors in servers of interest. The need to meet the increased power density of server racks in high-performance DCs, along with the push towards lower global warming potential (GWP) refrigerants due to environmental concerns, has motivated research on the selection of two-phase heat transfer fluids for cooling servers while simultaneously recovering waste heat. With this regard,… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

    O. N. Goncharova1, V. B. Bekezhanova2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1667-1686, 2024, DOI:10.32604/fdmp.2024.047959 - 23 July 2024

    Abstract The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied. The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed. In particular, the cases of local heating from below and distributed thermal load from the lateral walls are considered. The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation. A benzine–air system is considered as reference system. The variation in time of the contact angle is described for both heating More > Graphic Abstract

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

  • Open Access

    ARTICLE

    Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method

    Xin Liu1,*, Kai Yan2, Bo Fang3, Xiaoyu Sun3, Daqiang Feng4, Li Yin5

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1539-1552, 2024, DOI:10.32604/fdmp.2024.047922 - 23 July 2024

    Abstract In response to the complex characteristics of actual low-permeability tight reservoirs, this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs, considering complex boundary shapes. Utilizing radial basis function point interpolation, the method approximates shape functions for unknown functions within the nodal influence domain. The shape functions constructed by the aforementioned meshless interpolation method have δ-function properties, which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells. Moreover, the meshless method offers greater flexibility and freedom compared to grid cell discretization, making it simpler… More >

  • Open Access

    ARTICLE

    Drive Train Cooling Options for Electric Vehicles

    Randeep Singh1,*, Tomoki Oridate2, Tien Nguyen2

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 703-717, 2024, DOI:10.32604/fhmt.2024.050744 - 11 July 2024

    Abstract Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold. In this paper, passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle (EV) traction systems including battery, inverter, and motor. For the battery, a heat pipe base plate is used to provide high heat removal (180 W per module) and better thermal uniformity (<5°C) for the battery modules in a pack while downsizing the liquid cold plate system. In the case of Inverter, two phase cooling system… More > Graphic Abstract

    Drive Train Cooling Options for Electric Vehicles

Displaying 1-10 on page 1 of 86. Per Page