Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025

    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    Machine Learning-Based GPS Spoofing Detection and Mitigation for UAVs

    Charlotte Olivia Namagembe, Mohamad Ibrahim, Md Arafatur Rahman*, Prashant Pillai

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.070316 - 09 December 2025

    Abstract The rapid proliferation of commercial unmanned aerial vehicles (UAVs) has revolutionized fields such as precision agriculture and disaster response. However, their heavy reliance on GPS navigation leaves them highly vulnerable to spoofing attacks, with potentially severe consequences. To mitigate this threat, we present a machine learning-driven framework for real-time GPS spoofing detection, designed with a balance of detection accuracy and computational efficiency. Our work is distinguished by the creation of a comprehensive dataset of 10,000 instances that integrates both simulated and real-world data, enabling robust and generalizable model development. A comprehensive evaluation of multiple classification More >

  • Open Access

    REVIEW

    Applications of AI and Blockchain in Origin Traceability and Forensics: A Review of ICs, Pharmaceuticals, EVs, UAVs, and Robotics

    Hsiao-Chun Han1, Der-Chen Huang1,*, Chin-Ling Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 67-126, 2025, DOI:10.32604/cmes.2025.070944 - 30 October 2025

    Abstract This study presents a systematic review of applications of artificial intelligence (abbreviated as AI) and blockchain in supply chain provenance traceability and legal forensics cover five sectors: integrated circuits (abbreviated as ICs), pharmaceuticals, electric vehicles (abbreviated as EVs), drones (abbreviated as UAVs), and robotics—in response to rising trade tensions and geopolitical conflicts, which have heightened concerns over product origin fraud and information security. While previous literature often focuses on single-industry contexts or isolated technologies, this review comprehensively surveys these sectors and categorizes 116 peer-reviewed studies by application domain, technical architecture, and functional objective. Special attention More >

  • Open Access

    ARTICLE

    Rice Spike Identification and Number Prediction in Different Periods Based on UAV Imagery and Improved YOLOv8

    Fuheng Qu1, Hailong Li1,*, Ping Wang2, Sike Guo2, Lu Wang2, Xiaofeng Li3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3911-3925, 2025, DOI:10.32604/cmc.2025.063820 - 03 July 2025

    Abstract Rice spike detection and counting play a crucial role in rice yield research. Automatic detection technology based on Unmanned Aerial Vehicle (UAV) imagery has the advantages of flexibility, efficiency, low cost, safety, and reliability. However, due to the complex field environment and the small target morphology of some rice spikes, the accuracy of detection and counting is relatively low, and the differences in phenotypic characteristics of rice spikes at different growth stages have a significant impact on detection results. To solve the above problems, this paper improves the You Only Look Once v8 (YOLOv8) model,… More >

  • Open Access

    ARTICLE

    Collaborative Trajectory Planning for Stereoscopic Agricultural Multi-UAVs Driven by the Aquila Optimizer

    Xinyu Liu#, Longfei Wang#, Yuxin Ma, Peng Shao*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1349-1376, 2025, DOI:10.32604/cmc.2024.058294 - 03 January 2025

    Abstract Stereoscopic agriculture, as an advanced method of agricultural production, poses new challenges for multi-task trajectory planning of unmanned aerial vehicles (UAVs). To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture, a multi-task trajectory planning model and algorithm (IEP-AO) that synthesizes flight safety and flight efficiency is proposed. Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics, the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects, including the path, slope, altitude, corner, energy and obstacle threat, to improve the effectiveness of the trajectory… More >

  • Open Access

    ARTICLE

    Context-Aware Feature Extraction Network for High-Precision UAV-Based Vehicle Detection in Urban Environments

    Yahia Said1,*, Yahya Alassaf2, Taoufik Saidani3, Refka Ghodhbani3, Olfa Ben Rhaiem4, Ali Ahmad Alalawi1

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.058903 - 19 December 2024

    Abstract The integration of Unmanned Aerial Vehicles (UAVs) into Intelligent Transportation Systems (ITS) holds transformative potential for real-time traffic monitoring, a critical component of emerging smart city infrastructure. UAVs offer unique advantages over stationary traffic cameras, including greater flexibility in monitoring large and dynamic urban areas. However, detecting small, densely packed vehicles in UAV imagery remains a significant challenge due to occlusion, variations in lighting, and the complexity of urban landscapes. Conventional models often struggle with these issues, leading to inaccurate detections and reduced performance in practical applications. To address these challenges, this paper introduces CFEMNet,… More >

  • Open Access

    ARTICLE

    Integrated Energy-Efficient Distributed Link Stability Algorithm for UAV Networks

    Altaf Hussain1, Shuaiyong Li2, Tariq Hussain3, Razaz Waheeb Attar4, Farman Ali5,*, Ahmed Alhomoud6, Babar Shah7

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2357-2394, 2024, DOI:10.32604/cmc.2024.056694 - 18 November 2024

    Abstract Ad hoc networks offer promising applications due to their ease of use, installation, and deployment, as they do not require a centralized control entity. In these networks, nodes function as senders, receivers, and routers. One such network is the Flying Ad hoc Network (FANET), where nodes operate in three dimensions (3D) using Unmanned Aerial Vehicles (UAVs) that are remotely controlled. With the integration of the Internet of Things (IoT), these nodes form an IoT-enabled network called the Internet of UAVs (IoU). However, the airborne nodes in FANET consume high energy due to their payloads and… More >

  • Open Access

    REVIEW

    AI-Based UAV Swarms for Monitoring and Disease Identification of Brassica Plants Using Machine Learning: A Review

    Zain Anwar Ali1,2,*, Dingnan Deng1, Muhammad Kashif Shaikh3, Raza Hasan4, Muhammad Aamir Khan2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 1-34, 2024, DOI:10.32604/csse.2023.041866 - 26 January 2024

    Abstract Technological advances in unmanned aerial vehicles (UAVs) pursued by artificial intelligence (AI) are improving remote sensing applications in smart agriculture. These are valuable tools for monitoring and disease identification of plants as they can collect data with no damage and effects on plants. However, their limited carrying and battery capacities restrict their performance in larger areas. Therefore, using multiple UAVs, especially in the form of a swarm is more significant for monitoring larger areas such as crop fields and forests. The diversity of research studies necessitates a literature review for more progress and contribution in… More >

  • Open Access

    ARTICLE

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

    Lianghao Hua1,2, Jianfeng Zhang1,*, Dejie Li3, Xiaobo Xi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2129-2157, 2024, DOI:10.32604/cmes.2023.030535 - 15 December 2023

    Abstract With the increasing prevalence of high-order systems in engineering applications, these systems often exhibit significant disturbances and can be challenging to model accurately. As a result, the active disturbance rejection controller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmanned aerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances and the possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address these issues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neural network (RBFNN) with a More > Graphic Abstract

    Fractional Gradient Descent RBFNN for Active Fault-Tolerant Control of Plant Protection UAVs

  • Open Access

    REVIEW

    A Survey on Sensor- and Communication-Based Issues of Autonomous UAVs

    Pavlo Mykytyn1,2,*, Marcin Brzozowski1, Zoya Dyka1,2, Peter Langendoerfer1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1019-1050, 2024, DOI:10.32604/cmes.2023.029075 - 17 November 2023

    Abstract The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasing steadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader than ever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack of implemented security measures and raise new security and safety concerns. For instance, the issue of implausible or tampered UAV sensor measurements is barely addressed in the current research literature and thus, requires more attention from the research community. The goal of this… More >

Displaying 1-10 on page 1 of 29. Per Page