Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization

    Zhonghao Qian1, Hanyi Ma1, Jun Rao2, Jun Hu1, Lichengzi Yu2,*, Caoyi Feng1, Yunxu Qiu1, Kemo Ding1

    Energy Engineering, Vol.120, No.9, pp. 2013-2027, 2023, DOI:10.32604/ee.2023.028859 - 03 August 2023

    Abstract The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms. To improve the voltage stability and reactive power economy of wind farms, the improved particle swarm optimization is used to optimize the reactive power planning in wind farms. First, the power flow of offshore wind farms is modeled, analyzed and calculated. To improve the global search ability and local optimization ability of particle swarm optimization, the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor. Taking the minimum active power… More >

  • Open Access

    ARTICLE

    Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing

    Huanan Yu1, Gang Han1,*, Hansong Luo2, He Wang1

    Energy Engineering, Vol.120, No.9, pp. 2029-2057, 2023, DOI:10.32604/ee.2023.028365 - 03 August 2023

    Abstract Aiming at the problem that most of the cables in the power collection system of offshore wind farms are buried deep in the seabed, which makes it difficult to detect faults, this paper proposes a two-step fault location method based on compressed sensing and ranging equation. The first step is to determine the fault zone through compressed sensing, and improve the data measurement, dictionary design and algorithm reconstruction: Firstly, the phase-locked loop trigonometric function method is used to suppress the spike phenomenon when extracting the fault voltage, so that the extracted voltage value will not… More >

  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization

    Sihua Wang1,2, Wenhui Zhang1,2,*, Gaofei Zheng1,2, Xujie Li1,2, Yougeng Zhao1,2

    Energy Engineering, Vol.119, No.6, pp. 2431-2445, 2022, DOI:10.32604/ee.2022.020779 - 14 September 2022

    Abstract In order to improve the condition monitoring and fault diagnosis of wind turbines, a stacked noise reduction autoencoding network based on group normalization is proposed in this paper. The network is based on SCADA data of wind turbine operation, firstly, the group normalization (GN) algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed, and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder, which further optimizes the problem that the loss function swings too much during the update process. Finally, More >

  • Open Access

    ARTICLE

    Wind Energy Data Analysis and Resource Mapping of Dangla, Gojjam, Ethiopia

    Belayneh Yitayew1,*, Wondwossen Bogale2

    Energy Engineering, Vol.119, No.6, pp. 2513-2532, 2022, DOI:10.32604/ee.2022.018961 - 14 September 2022

    Abstract Energy is one of the most important factors in socio-economic development. The rapid increase in energy demand and air pollution has increased the number of ways to generate energy in the power sector. Currently, wind energy capacity in Ethiopia is estimated at 10,000 MW. Of these, however, only eight percent of its capacity has been used in recent years. One of the reasons for the low use of wind energy is the lack of accurate wind atlases in the country. Therefore, the purpose of this study is to develop an accurate wind atlas and review… More >

  • Open Access

    ARTICLE

    Optimal Intelligence Planning of Wind Power Plants and Power System Storage Devices in Power Station Unit Commitment Based

    Yuchen Hao*, Dawei Su, Zhen Lei

    Energy Engineering, Vol.119, No.5, pp. 2081-2104, 2022, DOI:10.32604/ee.2022.021342 - 21 July 2022

    Abstract Renewable energy sources (RES) such as wind turbines (WT) and solar cells have attracted the attention of power system operators and users alike, thanks to their lack of environmental pollution, independence of fossil fuels, and meager marginal costs. With the introduction of RES, challenges have faced the unit commitment (UC) problem as a traditional power system optimization problem aiming to minimize total costs by optimally determining units’ inputs and outputs, and specifying the optimal generation of each unit. The output power of RES such as WT and solar cells depends on natural factors such as… More >

  • Open Access

    REVIEW

    Review on Research about Wake Effects of Offshore Wind Turbines

    Yehong Dong1,2, Guangyin Tang3, Yan Jia4, Zekun Wang4,5, Xiaomin Rong5, Chang Cai5, Qingan Li5, Yingjian Yang4,5,*

    Energy Engineering, Vol.119, No.4, pp. 1341-1360, 2022, DOI:10.32604/ee.2022.019150 - 23 May 2022

    Abstract In recent years, the construction of offshore wind farms is developing rapidly. As the wake effect of the upstream wind turbines seriously affect the performance of the downstream wind turbines, the wake effect of offshore wind turbines has become one of the research hotspots. First, this article reviews the research methods of wake effects, including CFD numerical simulation method, wind turbine wake model based on roughness and engineering wake models. However, there is no general model that can be used directly. Then it puts forward some factors that affect the wake of offshore wind turbines.… More > Graphic Abstract

    Review on Research about Wake Effects of Offshore Wind Turbines

  • Open Access

    ARTICLE

    Protection of Zero-Sequence Power Variation in Mountain Wind Farm Collector Lines Based on Multi-Mode Grounding

    Hongchun Shu1,2, Yaqi Deng1,2,*, Pulin Cao2, Jun Dong2, Hongjiang Rao2, Zhiqian Bo2

    Energy Engineering, Vol.119, No.2, pp. 523-538, 2022, DOI:10.32604/ee.2022.015570 - 24 January 2022

    Abstract The arc-suppression coil (ASC) in parallel low resistance (LR) multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm. If the fault disappears before LR is put into the system, it is judged as an instantaneous fault; while the fault does not disappear after LR is put into the system, it is judged as a permanent fault; the single-phase grounding fault (SLG) protection criterion based on zero-sequence power variation is proposed to identify the instantaneous-permanent fault. Firstly, the More >

  • Open Access

    ARTICLE

    Investigation of Inverter Temperature Prediction Model in Wind Farm Based on SCADA Data

    Qihui Ling1,2,*, Wei Zhang2, Qiancheng Zhao1,2, Juchuan Dai1,2

    Energy Engineering, Vol.119, No.1, pp. 287-300, 2022, DOI:10.32604/EE.2022.014718 - 22 November 2021

    Abstract The inverter is one of the key components of wind turbine, and it is a complex circuit composed of a series of components such as a variety of electronic components and power devices. Therefore, it is difficult to accurately identify the operation states of inverter and some problems regarding its own circuit, especially in the early stages of failure. However, if the inverter temperature prediction model can be established, the early states can be identified through the judgment of the output temperature. Accordingly, considering whether the inverter heats up normally from the perspective of heat… More >

  • Open Access

    ARTICLE

    Ferroresonance Overvoltage Mitigation Using Surge Arrester for Grid-Connected Wind Farm

    Nehmdoh A. Sabiha*, Hend I. Alkhammash

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1107-1118, 2022, DOI:10.32604/iasc.2022.020070 - 22 September 2021

    Abstract Ferroresonance occurrence represents a very dangerous phenomenon to electric power systems. Concerning the recent trend of the applications of grid-connected wind farms, this phenomenon can lead to undesired overvoltages stressing the wind farm components. In this paper, the ferroresonance overvoltages are studied and mitigated for the grid-connected wind farm. Single-pole switching of the breaker is considered, where it is the most famous reason behind the ferroresonance transient events in the electric power systems. During the ferroresonance period, the transient voltage of the network is increased to more than three times the voltage level and associated… More >

  • Open Access

    ARTICLE

    Optimization of the Active Composition of the Wind Farm Using Genetic Algorithms

    Nataliya Shakhovska1,*, Mykola Medykovskyy2, Roman Melnyk2, Nataliya Kryvinska3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3065-3078, 2021, DOI:10.32604/cmc.2021.018761 - 24 August 2021

    Abstract The article presents the results of research on the possibilities of using genetic algorithms for solving the multicriteria optimization problem of determining the active components of a wind farm. Optimization is carried out on two parameters: efficiency factor of wind farm use (integrated parameter calculated on the basis of 6 parameters of each of the wind farm), average power deviation level (average difference between the load power and energy generation capabilities of the active wind farm). That was done an analysis of publications on the use of genetic algorithms to solve multicriteria optimization problems. Computer… More >

Displaying 11-20 on page 2 of 26. Per Page