Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (40)
  • Open Access

    ARTICLE

    Wind Power Revenue Potential: Simulation for Finland

    Sakarias Paaso*, Ali Khosravi

    Energy Engineering, Vol.118, No.4, pp. 1111-1133, 2021, DOI:10.32604/EE.2021.014949

    Abstract Potential revenue from wind power generation is an important factor to be considered when planning a wind power investment. In the future, that may become even more important because it is known that wind power generation tends to push electricity wholesale prices lower. Consequently, it is possible that if a region has plenty of installed wind power capacity, revenue per generated unit of electricity is lower there than could be assumed by looking at the mean electricity wholesale price. In this paper, we compare 17 different locations in Finland in terms of revenue from wind power generation. That is done… More >

  • Open Access

    ARTICLE

    A Storage and Transmission Joint Planning Method for Centralized Wind Power Transmission

    Xiuyu Yang1,*, Qi Guo1, Jianzhong Gui2, Renyong Chai3, Xueyuan Liu1

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1081-1097, 2021, DOI:10.32604/cmc.2021.016375

    Abstract Centralized delivery has become the main operation mode under the scaled development of wind power. Transmission channels are usually the guarantee of out-delivered wind power for large-scale wind base. The configuration of transmission capacity, which has the features of low utilization and poor economy, is hardly matching correctly due to the volatility and low energy density of wind. The usage of energy storage can mitigate wind power fluctuations and reduce the requirement of out-delivery transmission capacity, but facing the issue of energy storage cost recovery. Therefore, it is necessary to optimize the allocation of energy storage while considering the problem… More >

  • Open Access

    ARTICLE

    Analysis of Electromagnetic Performance of Modulated Coaxial Magnetic Gears Used in Semi-Direct Drive Wind Turbines

    Jungang Wang1,*, Liqun Qian1, Shuairui Xu1, Ruina Mo2

    Energy Engineering, Vol.118, No.2, pp. 251-264, 2021, DOI:10.32604/EE.2021.014143

    Abstract Wind turbine is a key device to realize the utilization of wind energy, and it has been highly valued by all countries. But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise, high failure rate, and short service time. Magnetic field modulation electromagnetic gear transmission is a new non-contact transmission method. However, the conventional modulation magnetic gear has low torque density and torque defects with large fluctuations. In order to overcome the gear transmission problems of the existing semi-direct drive wind power generation machinery and improve the electromagnetic performance of the… More >

  • Open Access

    ARTICLE

    Time-Domain Protection for Transmission Lines Connected to Wind Power Plant based on Model Matching and Hausdorff Distance

    Hongchun Shu1,2, Xiaohan Jiang1,2,*, Pulin Cao2, Na An2, Xincui Tian2, Bo Yang2

    Energy Engineering, Vol.118, No.1, pp. 53-71, 2021, DOI:10.32604/EE.2020.012381

    Abstract The system impedance instability, high-order harmonics, and frequency offset are main fault characteristics of wind power system. Moreover, the measurement angle of faulty phase is affected by rotation speed frequency component, which causes traditional directional protections based on angle comparison between voltage and current to operate incorrectly. In this paper, a time-domain protection for connected to wind power plant based on model matching is proposed, which compares the calculated current and the measured current to identify internal faults and external faults. Under external faults, the calculated current and measured current waveform are quite similar because the protected transmission lines is… More >

  • Open Access

    ARTICLE

    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

    Hanpeng Kou1, Tianlong Bu1, Leer Mao1, Yihong Jiao2,*, Chunming Liu2

    Energy Engineering, Vol.121, No.4, pp. 1027-1048, 2024, DOI:10.32604/ee.2023.045358

    Abstract

    In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network, a multi-objective two-stage decentralised wind power planning method is proposed in the paper, which takes into account the network loss correction for the extreme cold region. Firstly, an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation; secondly, a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss… More > Graphic Abstract

    Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather

  • Open Access

    ARTICLE

    Deep Learning Approach with Optimizatized Hidden-Layers Topology for Short-Term Wind Power Forecasting

    Xing Deng1,2, Haijian Shao1,2,*

    Energy Engineering, Vol.117, No.5, pp. 279-287, 2020, DOI:10.32604/EE.2020.011619

    Abstract Recurrent neural networks (RNNs) as one of the representative deep learning methods, has restricted its generalization ability because of its indigestion hidden-layer information presentation. In order to properly handle of hidden-layer information, directly reduce the risk of over-fitting caused by too many neuron nodes, as well as realize the goal of streamlining the number of hidden layer neurons, and then improve the generalization ability of RNNs, the hidden-layer information of RNNs is precisely analyzed by using the unsupervised clustering methods, such as Kmeans, Kmeans++ and Iterative self-organizing data analysis (Isodata), to divide the similarity of raw data points, and maps… More >

  • Open Access

    ARTICLE

    Analysis and Application of the Spatio-Temporal Feature in Wind Power Prediction

    Ruiguo Yu1,2, Zhiqiang Liu1,2, Jianrong Wang1,3, Mankun Zhao1,2, Jie Gao1,3, Mei Yu1,3,*

    Computer Systems Science and Engineering, Vol.33, No.4, pp. 267-274, 2018, DOI:10.32604/csse.2018.33.267

    Abstract The spatio-temporal feature with historical wind power information and spatial information can effectively improve the accuracy of wind power prediction, but the role of the spatio-temporal feature has not yet been fully discovered. This paper investigates the variance of the spatio-temporal feature. Based on this, a hybrid machine learning method for wind power prediction is designed. First, the training set is divided into several groups according to the variance of the input pattern, and then each group is used to train one or more predictors respectively. Multiple machine learning methods, such as the support vector machine regression and the decision… More >

  • Open Access

    REVIEW

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Xing Deng1, 2, Haijian Shao1, *, Chunlong Hu1, Dengbiao Jiang1, Yingtao Jiang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 273-301, 2020, DOI:10.32604/cmes.2020.08768

    Abstract Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of… More >

  • Open Access

    ARTICLE

    Modeling and Bending Vibration of the Blade of a Horizontal-Axis Wind Power Turbine

    Shueei-Muh Lin1, Sen-Yung Lee2, Yu-Sheng Lin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.3, pp. 175-186, 2008, DOI:10.3970/cmes.2008.023.175

    Abstract The blade of a horizontal-axis wind power turbine is modeled as a rotating beam with pre-cone angles and setting angles. Based on the Bernoulli-Euler beam theory, without considering the axial extension deformation and the Coriolis forces effect, the governing differential equations for the bending vibration of the beam are derived. It is pointed out that if the geometric and the material properties of the beam are in polynomial forms, then the exact solution for the system can be obtained. Based on the frequency relations as revealed, without tedious numerical analysis, one can reach many general qualitative conclusions between the natural… More >

  • Open Access

    ARTICLE

    Improving the Efficiency of Wind Power System by Using Natural Convection Flows

    M. Kriaa1, M. El Alami1,2, M. Najam1, E. Semma3

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 125-140, 2011, DOI:10.3970/fdmp.2011.007.125

    Abstract In this paper a numerical study of natural convection in a two dimensional convergent channel, with or without rectangular block, is carried out. The block is placed at the channel outlet and its thermal conductivity is set equal to that of air. One of channel planes is heated at constant temperature TH. The other one is maintained cold at TC < TH. The governing equations are solved using a finite volume method and the SIMLEC algorithm for the velocity-pressure coupling is used. Special emphasis is given to detail the effect of the block size and Rayleigh number on the dynamics… More >

Displaying 31-40 on page 4 of 40. Per Page