Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (79)
  • Open Access

    ARTICLE

    Wind Turbine Drivetrain Expert Fault Detection System: Multivariate Empirical Mode Decomposition based Multi-sensor Fusion with Bayesian Learning Classification

    R. Uma Maheswari1,*, R. Umamaheswari2

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 479-488, 2020, DOI:10.32604/iasc.2020.013924

    Abstract To enhance the predictive condition-based maintenance (CBMS), a reliable automatic Drivetrain fault detection technique based on vibration monitoring is proposed. Accelerometer sensors are mounted on a wind turbine drivetrain at different spatial locations to measure the vibration from multiple vibration sources. In this work, multi-channel signals are fused and monocomponent modes of oscillation are reconstructed by the Multivariate Empirical Mode Decomposition (MEMD) Technique. Noise assisted methodology is adapted to palliate the mixing of modes with common frequency scales. The instantaneous amplitude envelope and instantaneous frequency are estimated with the Hilbert transform. Low order and high order statistical moments, signal feature… More >

  • Open Access

    ARTICLE

    Determination of the Circulation for a Large-Scale Wind Turbine Blade Using Computational Fluid Dynamics

    Hao Cheng, Guangsheng Du*, Meng Zhang, Kun Wang, Wenbin Bai

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 685-698, 2020, DOI:10.32604/fdmp.2020.09673

    Abstract The determination of the circulation for wind turbine blades is an important problem in engineering. In the present study, we develop a specific approach to evaluate the integral that represents mathematically the circulation. First the potentialities of the method are assessed using a two-dimensional NACA64_A17 airfoil as a testbed and evaluating the influence of different integration paths and angles of attack on the circulation value. Then the method is applied to blades with different relative heights in order to provide useful reference data to be used for the optimization and reverse design of wind turbine blades. As shown by the… More >

  • Open Access

    ARTICLE

    Evaluation of Small Wind Turbine Blades with Uni-Vinyl Foam Alignments Using Static Structural Analysis

    Ajay Veludurthi1, Venkateshwarlu Bolleddu2,*

    Energy Engineering, Vol.117, No.4, pp. 237-248, 2020, DOI:10.32604/EE.2020.011304

    Abstract Mechanical characteristics of small wind turbine blades of National Advisory Committee for Aeronautics (NACA) 63-415 series with different Univinyl (UV) foam alignments have been evaluated experimentally using Universal Testing Machine and numerically using Finite Element Analysis (FEA) software ANSYS. The wind turbine blade models considered are selected from the NACA 63415 series to give a power output of 1 kW. The blades in this study are made like a sandwich beam structure. The outermost portion of the blade is made of glass fiber reinforced plastics with epoxy resin as composite and Uni-vinyl foam alignments are placed in the inner portion,… More >

  • Open Access

    ARTICLE

    Single Parameter Sensitivity Analysis of Ply Parameters on Structural Performance of Wind Turbine Blade

    Lanting Zhang, Laifu Guo, Qiang Rong*

    Energy Engineering, Vol.117, No.4, pp. 195-207, 2020, DOI:10.32604/EE.2020.010617

    Abstract The various ply parameters of composite wind turbine blade have crucial influence, of respectively varying degree, on the static strength and stiffness of the blade, elements closely related to its performance. In this article, the method of the single-parameter sensitivity analysis is presented. A 1.5 MW wind turbine blade is considered as the study object, where the load of the blade is calculated and the respective finite element model is established. According to engineering practice, the investigation range of ply parameters is determined, and the test design scheme of ply parameter for the blade is constructed. The Tsai-Wu failure factor… More >

  • Open Access

    ARTICLE

    Scour Effect on Dynamic Characteristics and Responses of Offshore Wind Turbines

    Dongyue Tang1, Ming Zhao1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 433-457, 2020, DOI:10.32604/cmes.2020.09268

    Abstract The monopile foundation is the main form of offshore wind turbine foundation, and its surrounding scouring pit will reduce the constraints of the soil on the piles, which makes wind turbine foundation instability a key issue affecting the structural safety of offshore wind turbines. In previous studies, the rotating rotor and control system are neglected when studying the influence of scour on the offshore wind turbine structure. In this paper, the numerical model of the blade-tower-monopile integrated offshore wind turbine is established, and the influence of scour on the dynamic characteristics of wind turbine is obtained considering parameters, such as… More >

  • Open Access

    ARTICLE

    Vibration Performance, Stability and Energy Transfer of Wind Turbine Tower via Pd Controller

    Y. S. Hamed1, 2, *, Ayman A. Al3, 4, B. Sale3, 4, Ageel F. Alogla3, Awad M. Aljuaid3, Mosleh M. Alharthi0F5

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 871-886, 2020, DOI:10.32604/cmc.2020.08120

    Abstract In this paper, we studied the vibration performance, energy transfer and stability of the offshore wind turbine tower system under mixed excitations. The method of multiple scales is utilized to calculate the approximate solutions of wind turbine system. The proportional-derivative controller was applied for reducing the oscillations of the controlled system. Adding the controller to single degree of freedom system equation is responsible for energy transfers in offshore wind turbine tower system. The steady state solution of stability at worst resonance cases is studied and examined. The offshore wind turbine system behavior was studied numerically at its different parameters values.… More >

  • Open Access

    ARTICLE

    Experimental Study on Modal and Harmonic Analysis of Small Wind Turbine Blades Using NACA 63-415 Aerofoil Cross-Section

    Ajay Veludurthi1, Venkateshwarlu Bolleddu2,*

    Energy Engineering, Vol.117, No.2, pp. 49-61, 2020, DOI:10.32604/EE.2020.010666

    Abstract This work focused on modal and harmonic analysis of small wind turbine blades taken from the NACA 63415 series. The sandwich structure type composite blade is fabricated from GFRP and epoxy with Uni-vinyl hard foams of different alignments as stiffeners. In this work, the modal and harmonic analysis of different varieties of blades like solid, hallow and rectangular alignment blades is carried out by the finite element method using ANSYS 18.1 software. From Finite Element Analysis, the natural frequencies, amplitudes and mode shapes are obtained. Based on the working principle of wind turbine blades, the boundary conditions are applied. The… More >

  • Open Access

    ARTICLE

    Performance and Cost Analysis of Energy Production from Offshore Wind Turbines

    Haytham Ayoub, Ehab Hussein Bani-Hani*

    Energy Engineering, Vol.117, No.1, pp. 41-47, 2020, DOI:10.32604/EE.2020.010412

    Abstract Offshore wind turbine is analyzed theoretically and experimentally for improving wind energy harvesting. The energy produced is calculated at different wind speeds. The wind speed curve is generated by measuring the wind speed on daily base for one year. Curves that show the power extraction for experimental study and from the theoretical calculations are generated. The energy production investigation is expanded over a period of 15 years after comparing the annual energy production in theory and practice. The study shows the cost of electricity over the same time period assuming different interest rates. Three time intervals are shown that are… More >

  • Open Access

    ARTICLE

    Comparative Study on Tree Classifiers for Application to Condition Monitoring of Wind Turbine Blade through Histogram Features Using Vibration Signals: A Data-Mining Approach

    A. Joshuva1,*, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.4, pp. 399-416, 2019, DOI:10.32604/sdhm.2019.03014

    Abstract Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources. The wind turbine is an essential system used to change kinetic energy into electrical energy. Wind turbine blades, in particular, require a competitive condition inspection approach as it is a significant component of the wind turbine system that costs around 20-25 percent of the total turbine cost. The main objective of this study is to differentiate between various blade faults which affect the wind turbine blade under operating conditions using a machine learning approach through histogram features. In this… More >

  • Open Access

    ARTICLE

    Dynamic Modeling and Analysis of Wind Turbine Blade of Piezoelectric Plate Shell

    Yinhu Qiao1,*, Chunyan Zhang1, Jiang Han2

    Sound & Vibration, Vol.53, No.1, pp. 14-24, 2019, DOI:10.32604/sv.2019.04120

    Abstract This paper presents a theoretical analysis of vibration control technology of wind turbine blades made of piezoelectric intelligent structures. The design of the blade structure, which is made from piezoelectric material, is approximately equivalent to a flat shell structure. The differential equations of piezoelectric shallow shells for vibration control are derived based on piezoelectric laminated shell theory. On this basis, wind turbine blades are simplified as elastic piezoelectric laminated shells. We establish the electromechanical coupling system dynamic model of intelligent structures and the dynamic equation of composite piezoelectric flat shell structures by analyzing simulations of active vibration control. Simulation results… More >

Displaying 61-70 on page 7 of 79. Per Page