Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    An Analysis of the Formation Mechanisms of Abrasive Particles and Their Effects on Cutting Efficiency

    Wei Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1153-1167, 2022, DOI:10.32604/fdmp.2022.019719

    Abstract Magnetic induction-free abrasive wire sawing (MIFAWS) is a method that combines magnetic fields with traditional free abrasive wire sawing technologies. Magnetic abrasive particles (MAPs) are attracted on a magnetized wire, thus leading to an increase in their number into the cutting zone. The number of instantaneous-effective abrasive particles (IEAPs) adsorbed on the wire surface has a great influence on the cutting efficiency of the saw wire. In this study, a mathematic model of the movement of the MAP is presented, and the factors influencing the IEAPs number, including slurry-supply speed and slurry dynamic viscosity, are investigated both by means of… More >

  • Open Access

    ARTICLE

    Preparation and Optimization of High-Purity Silicon Carbide Magnetic Abrasives for the Magnetic Induction-Wire Sawing Process

    Wei Zhang1,*, Tengwei Qiu1, Chunyan Yao2

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 709-721, 2020, DOI:10.32604/fdmp.2020.010748

    Abstract In this study, magnetic abrasives were obtained by crushing and sieving sintered iron-silicon carbide (Fe-SiC) composites. Fe and SiC powders with different mesh numbers were pre-compacted using different pressures and then sintered at various temperatures and with different holding times. The dispersion uniformity of the SiC powder was improved through surface modification using polyethylene glycol (PEG) 300. The resulting magnetic abrasives were characterized in terms of phase composition, density, relative permeability, and microstructure; this was followed by a comprehensive analysis to reveal the optimal processing parameters. The ideal combination of process parameters for preparing SiC magnetic-abrasive grains for the magnetic… More >

Displaying 1-10 on page 1 of 2. Per Page