Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (195)
  • Open Access

    ARTICLE

    Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture

    Medhat A. Tawfeek1,2, Nacim Yanes3,4, Leila Jamel5,*, Ghadah Aldehim5, Mahmood A. Mahmood1,6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2545-2564, 2023, DOI:10.32604/cmc.2023.042179

    Abstract The trend towards smart greenhouses stems from various factors, including a lack of agricultural land area owing to population concentration and housing construction on agricultural land, as well as water shortages. This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers. The proposed model uses a one-dimensional convolutional neural network (CNN) deep learning model to control the growth of strategic crops, including cucumber, pepper, tomato, and bean. The proposed model uses the Internet of Things (IoT) to collect data on agricultural operations and then uses this data… More >

  • Open Access

    ARTICLE

    Unweighted Voting Method to Detect Sinkhole Attack in RPL-Based Internet of Things Networks

    Shadi Al-Sarawi1, Mohammed Anbar1,*, Basim Ahmad Alabsi2, Mohammad Adnan Aladaileh3, Shaza Dawood Ahmed Rihan2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 491-515, 2023, DOI:10.32604/cmc.2023.041108

    Abstract The Internet of Things (IoT) consists of interconnected smart devices communicating and collecting data. The Routing Protocol for Low-Power and Lossy Networks (RPL) is the standard protocol for Internet Protocol Version 6 (IPv6) in the IoT. However, RPL is vulnerable to various attacks, including the sinkhole attack, which disrupts the network by manipulating routing information. This paper proposes the Unweighted Voting Method (UVM) for sinkhole node identification, utilizing three key behavioral indicators: DODAG Information Object (DIO) Transaction Frequency, Rank Harmony, and Power Consumption. These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant… More >

  • Open Access

    ARTICLE

    A Sensor Network Coverage Planning Based on Adjusted Single Candidate Optimizer

    Trong-The Nguyen1,2,3, Thi-Kien Dao1,2,3,*, Trinh-Dong Nguyen2,3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3213-3234, 2023, DOI:10.32604/iasc.2023.041356

    Abstract Wireless sensor networks (WSNs) are widely used for various practical applications due to their simplicity and versatility. The quality of service in WSNs is greatly influenced by the coverage, which directly affects the monitoring capacity of the target region. However, low WSN coverage and uneven distribution of nodes in random deployments pose significant challenges. This study proposes an optimal node planning strategy for network coverage based on an adjusted single candidate optimizer (ASCO) to address these issues. The single candidate optimizer (SCO) is a metaheuristic algorithm with stable implementation procedures. However, it has limitations in avoiding local optimum traps in… More >

  • Open Access

    ARTICLE

    Developed Fall Detection of Elderly Patients in Internet of Healthcare Things

    Omar Reyad1,2, Hazem Ibrahim Shehata1,3, Mohamed Esmail Karar1,4,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1689-1700, 2023, DOI:10.32604/cmc.2023.039084

    Abstract Falling is among the most harmful events older adults may encounter. With the continuous growth of the aging population in many societies, developing effective fall detection mechanisms empowered by machine learning technologies and easily integrable with existing healthcare systems becomes essential. This paper presents a new healthcare Internet of Health Things (IoHT) architecture built around an ensemble machine learning-based fall detection system (FDS) for older people. Compared to deep neural networks, the ensemble multi-stage random forest model allows the extraction of an optimal subset of fall detection features with minimal hyperparameters. The number of cascaded random forest stages is automatically… More >

  • Open Access

    ARTICLE

    Billiards Optimization with Modified Deep Learning for Fault Detection in Wireless Sensor Network

    Yousif Sufyan Jghef1, Mohammed Jasim Mohammed Jasim2, Subhi R. M. Zeebaree3,*, Rizgar R. Zebari4

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1651-1664, 2023, DOI:10.32604/csse.2023.037449

    Abstract Wireless Sensor Networks (WSNs) gather data in physical environments, which is some type. These ubiquitous sensors face several challenges responsible for corrupting them (mostly sensor failure and intrusions in external agents). WSNs were disposed to error, and effectual fault detection techniques are utilized for detecting faults from WSNs in a timely approach. Machine learning (ML) was extremely utilized for detecting faults in WSNs. Therefore, this study proposes a billiards optimization algorithm with modified deep learning for fault detection (BIOMDL-FD) in WSN. The BIOMDLFD technique mainly concentrates on identifying sensor faults to enhance network efficiency. To do so, the presented BIOMDL-FD… More >

  • Open Access

    ARTICLE

    Hybrid Power Bank Deployment Model for Energy Supply Coverage Optimization in Industrial Wireless Sensor Network

    Hang Yang1,2,*, Xunbo Li1, Witold Pedrycz2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1531-1551, 2023, DOI:10.32604/iasc.2023.039256

    Abstract Energy supply is one of the most critical challenges of wireless sensor networks (WSNs) and industrial wireless sensor networks (IWSNs). While research on coverage optimization problem (COP) centers on the network’s monitoring coverage, this research focuses on the power banks’ energy supply coverage. The study of 2-D and 3-D spaces is typical in IWSN, with the realistic environment being more complex with obstacles (i.e., machines). A 3-D surface is the field of interest (FOI) in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN. The hybrid power bank deployment model is… More >

  • Open Access

    ARTICLE

    Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering Scheme for Cognitive Radio Wireless Sensor Networks

    Sami Saeed Binyamin1, Mahmoud Ragab2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 105-119, 2023, DOI:10.32604/csse.2023.037311

    Abstract Cognitive radio wireless sensor networks (CRWSN) can be defined as a promising technology for developing bandwidth-limited applications. CRWSN is widely utilized by future Internet of Things (IoT) applications. Since a promising technology, Cognitive Radio (CR) can be modelled to alleviate the spectrum scarcity issue. Generally, CRWSN has cognitive radio-enabled sensor nodes (SNs), which are energy limited. Hierarchical cluster-related techniques for overall network management can be suitable for the scalability and stability of the network. This paper focuses on designing the Modified Dwarf Mongoose Optimization Enabled Energy Aware Clustering (MDMO-EAC) Scheme for CRWSN. The MDMO-EAC technique mainly intends to group the… More >

  • Open Access

    ARTICLE

    Design of Evolutionary Algorithm Based Unequal Clustering for Energy Aware Wireless Sensor Networks

    Mohammed Altaf Ahmed1, T. Satyanarayana Murthy2, Fayadh Alenezi3, E. Laxmi Lydia4, Seifedine Kadry5,6,7, Yena Kim8, Yunyoung Nam8,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1283-1297, 2023, DOI:10.32604/csse.2023.035786

    Abstract Wireless Sensor Networks (WSN) play a vital role in several real-time applications ranging from military to civilian. Despite the benefits of WSN, energy efficiency becomes a major part of the challenging issue in WSN, which necessitate proper load balancing amongst the clusters and serves a wider monitoring region. The clustering technique for WSN has several benefits: lower delay, higher energy efficiency, and collision avoidance. But clustering protocol has several challenges. In a large-scale network, cluster-based protocols mainly adapt multi-hop routing to save energy, leading to hot spot problems. A hot spot problem becomes a problem where a cluster node nearer… More >

  • Open Access

    ARTICLE

    Selection of Metaheuristic Algorithm to Design Wireless Sensor Network

    Rakhshan Zulfiqar1,2, Tariq Javed1, Zain Anwar Ali2,*, Eman H. Alkhammash3, Myriam Hadjouni4

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 985-1000, 2023, DOI:10.32604/iasc.2023.037248

    Abstract The deployment of sensor nodes is an important aspect in mobile wireless sensor networks for increasing network performance. The longevity of the networks is mostly determined by the proportion of energy consumed and the sensor nodes’ access network. The optimal or ideal positioning of sensors improves the portable sensor networks effectiveness. Coverage and energy usage are mostly determined by successful sensor placement strategies. Nature-inspired algorithms are the most effective solution for short sensor lifetime. The primary objective of work is to conduct a comparative analysis of nature-inspired optimization for wireless sensor networks (WSNs’) maximum network coverage. Moreover, it identifies quantity… More >

  • Open Access

    ARTICLE

    Real-Time Data Transmission with Data Carrier Support Value in Neighbor Strategic Collection in WSN

    S. Ponnarasi1,*, T. Rajendran2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6039-6057, 2023, DOI:10.32604/cmc.2023.035499

    Abstract An efficient trust-aware secure routing and network strategy-based data collection scheme is presented in this paper to enhance the performance and security of wireless sensor networks during data collection. The method first discovers the routes between the data sensors and the sink node. Several factors are considered for each sensor node along the route, including energy, number of neighbours, previous transmissions, and energy depletion ratio. Considering all these variables, the Sink Reachable Support Measure and the Secure Communication Support Measure, the method evaluates two distinct measures. The method calculates the data carrier support value using these two metrics. A single… More >

Displaying 1-10 on page 1 of 195. Per Page