Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    A Transmission and Transformation Fault Detection Algorithm Based on Improved YOLOv5

    Xinliang Tang1, Xiaotong Ru1, Jingfang Su1,*, Gabriel Adonis2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2997-3011, 2023, DOI:10.32604/cmc.2023.038923 - 08 October 2023

    Abstract On the transmission line, the invasion of foreign objects such as kites, plastic bags, and balloons and the damage to electronic components are common transmission line faults. Detecting these faults is of great significance for the safe operation of power systems. Therefore, a YOLOv5 target detection method based on a deep convolution neural network is proposed. In this paper, Mobilenetv2 is used to replace Cross Stage Partial (CSP)-Darknet53 as the backbone. The structure uses depth-wise separable convolution toreduce the amount of calculation and parameters; improve the detection rate. At the same time, to compensate for… More >

  • Open Access

    ARTICLE

    Contamination Identification of Lentinula Edodes Logs Based on Improved YOLOv5s

    Xuefei Chen1, Wenhui Tan2, Qiulan Wu1,*, Feng Zhang1, Xiumei Guo1, Zixin Zhu1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3143-3157, 2023, DOI:10.32604/iasc.2023.040903 - 11 September 2023

    Abstract In order to improve the accuracy and efficiency of Lentinula edodes logs contamination identification, an improved YOLOv5s contamination identification model for Lentinula edodes logs (YOLOv5s-CGGS) is proposed in this paper. Firstly, a CA (coordinate attention) mechanism is introduced in the feature extraction network of YOLOv5s to improve the identifiability of Lentinula edodes logs contamination and the accuracy of target localization. Then, the CIoU (Complete-IOU) loss function is replaced by an SIoU (SCYLLA-IoU) loss function to improve the model’s convergence speed and inference accuracy. Finally, the GSConv and GhostConv modules are used to improve and optimize More >

  • Open Access

    ARTICLE

    Underwater Waste Recognition and Localization Based on Improved YOLOv5

    Jinxing Niu1,*, Shaokui Gu1, Junmin Du2, Yongxing Hao1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2015-2031, 2023, DOI:10.32604/cmc.2023.040489 - 30 August 2023

    Abstract With the continuous development of the economy and society, plastic pollution in rivers, lakes, oceans, and other bodies of water is increasingly severe, posing a serious challenge to underwater ecosystems. Effective cleaning up of underwater litter by robots relies on accurately identifying and locating the plastic waste. However, it often causes significant challenges such as noise interference, low contrast, and blurred textures in underwater optical images. A weighted fusion-based algorithm for enhancing the quality of underwater images is proposed, which combines weighted logarithmic transformations, adaptive gamma correction, improved multi-scale Retinex (MSR) algorithm, and the contrast… More >

  • Open Access

    ARTICLE

    Accelerate Single Image Super-Resolution Using Object Detection Process

    Xiaolin Xing1, Shujie Yang1,*, Bohan Li2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1585-1597, 2023, DOI:10.32604/cmc.2023.035415 - 30 August 2023

    Abstract Image Super-Resolution (SR) research has achieved great success with powerful neural networks. The deeper networks with more parameters improve the restoration quality but add the computation complexity, which means more inference time would be cost, hindering image SR from practical usage. Noting the spatial distribution of the objects or things in images, a two-stage local objects SR system is proposed, which consists of two modules, the object detection module and the SR module. Firstly, You Only Look Once (YOLO), which is efficient in generic object detection tasks, is selected to detect the input images for More >

  • Open Access

    ARTICLE

    Multi-Target Tracking of Person Based on Deep Learning

    Xujun Li*, Guodong Fang, Liming Rao, Tengze Zhang

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2671-2688, 2023, DOI:10.32604/csse.2023.038154 - 28 July 2023

    Abstract To improve the tracking accuracy of persons in the surveillance video, we proposed an algorithm for multi-target tracking persons based on deep learning. In this paper, we used You Only Look Once v5 (YOLOv5) to obtain person targets of each frame in the video and used Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) to do cascade matching and Intersection Over Union (IOU) matching of person targets between different frames. To solve the IDSwitch problem caused by the low feature extraction ability of the Re-Identification (ReID) network in the process of cascade… More >

  • Open Access

    ARTICLE

    Quick and Accurate Counting of Rapeseed Seedling with Improved YOLOv5s and Deep-Sort Method

    Chen Su, Jie Hong, Jiang Wang, Yang Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2611-2632, 2023, DOI:10.32604/phyton.2023.029457 - 28 July 2023

    Abstract The statistics of the number of rapeseed seedlings are very important for breeders and planters to conduct seed quality testing, field crop management and yield estimation. Calculating the number of seedlings is inefficient and cumbersome in the traditional method. In this study, a method was proposed for efficient detection and calculation of rapeseed seedling number based on improved you only look once version 5 (YOLOv5) to identify objects and deep-sort to perform object tracking for rapeseed seedling video. Coordinated attention (CA) mechanism was added to the trunk of the improved YOLOv5s, which made the model… More >

  • Open Access

    ARTICLE

    Lightweight Surface Litter Detection Algorithm Based on Improved YOLOv5s

    Zunliang Chen1,2, Chengxu Huang1,2, Lucheng Duan1,2, Baohua Tan1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1085-1102, 2023, DOI:10.32604/cmc.2023.039451 - 08 June 2023

    Abstract In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower, a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed to provide core technical support for real-time water surface litter detection by water surface litter cleanup vessels. The method reduces network parameters by introducing the deep separable convolution GhostConv in the lightweight network GhostNet to substitute the ordinary convolution in the original YOLOv5s feature extraction and fusion network; introducing the C3Ghost module to substitute the C3 module in the original backbone and… More >

  • Open Access

    ARTICLE

    Leaky Cable Fixture Detection in Railway Tunnel Based on RW DCGAN and Compressed GS-YOLOv5

    Suhang Li1, Yunzuo Zhang1,*, Ruixue Liu2, Jiayu Zhang1, Zhouchen Song1, Yutai Wang1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1163-1180, 2023, DOI:10.32604/iasc.2023.037902 - 29 April 2023

    Abstract The communication system of high-speed trains in railway tunnels needs to be built with leaky cables fixed on the tunnel wall with special fixtures. To ensure safety, checking the regular leaky cable fixture is necessary to eliminate the potential danger. At present, the existing fixture detection algorithms are difficult to take into account detection accuracy and speed at the same time. The faulty fixture is also insufficient and difficult to obtain, seriously affecting the model detection effect. To solve these problems, an innovative detection method is proposed in this paper. Firstly, we presented the Res-Net… More >

  • Open Access

    ARTICLE

    Fire Detection Algorithm Based on an Improved Strategy of YOLOv5 and Flame Threshold Segmentation

    Yuchen Zhao, Shulei Wu*, Yaoru Wang, Huandong Chen*, Xianyao Zhang, Hongwei Zhao

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5639-5657, 2023, DOI:10.32604/cmc.2023.037829 - 29 April 2023

    Abstract Due to the rapid growth and spread of fire, it poses a major threat to human life and property. Timely use of fire detection technology can reduce disaster losses. The traditional threshold segmentation method is unstable, and the flame recognition methods of deep learning require a large amount of labeled data for training. In order to solve these problems, this paper proposes a new method combining You Only Look Once version 5 (YOLOv5) network model and improved flame segmentation algorithm. On the basis of the traditional color space threshold segmentation method, the original segmentation threshold… More >

  • Open Access

    ARTICLE

    A Model for Helmet-Wearing Detection of Non-Motor Drivers Based on YOLOv5s

    Hongyu Lin, Feng Jiang*, Yu Jiang, Huiyin Luo, Jian Yao, Jiaxin Liu

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5321-5336, 2023, DOI:10.32604/cmc.2023.036893 - 29 April 2023

    Abstract Detecting non-motor drivers’ helmets has significant implications for traffic control. Currently, most helmet detection methods are susceptible to the complex background and need more accuracy and better robustness of small object detection, which are unsuitable for practical application scenarios. Therefore, this paper proposes a new helmet-wearing detection algorithm based on the You Only Look Once version 5 (YOLOv5). First, the Dilated convolution In Coordinate Attention (DICA) layer is added to the backbone network. DICA combines the coordinated attention mechanism with atrous convolution to replace the original convolution layer, which can increase the perceptual field of… More >

Displaying 21-30 on page 3 of 43. Per Page