Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Semantic Segmentation and YOLO Detector over Aerial Vehicle Images

    Asifa Mehmood Qureshi1, Abdul Haleem Butt1, Abdulwahab Alazeb2, Naif Al Mudawi2, Mohammad Alonazi3, Nouf Abdullah Almujally4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3315-3332, 2024, DOI:10.32604/cmc.2024.052582

    Abstract Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management. However, vehicles come in a range of sizes, which is challenging to detect, affecting the traffic monitoring system’s overall accuracy. Deep learning is considered to be an efficient method for object detection in vision-based systems. In this paper, we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5 (YOLOv5) detector combined with a segmentation technique. The model consists of six steps. In the first step, all the extracted traffic sequence images are subjected… More >

  • Open Access

    ARTICLE

    An Improved YOLOv5s-Based Smoke Detection System for Outdoor Parking Lots

    Ruobing Zuo1, Xiaohan Huang1, Xuguo Jiao2,3, Zhenyong Zhang1,4,5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3333-3349, 2024, DOI:10.32604/cmc.2024.050544

    Abstract In the rapidly evolving urban landscape, outdoor parking lots have become an indispensable part of the city’s transportation system. The growth of parking lots has raised the likelihood of spontaneous vehicle combustion, a significant safety hazard, making smoke detection an essential preventative step. However, the complex environment of outdoor parking lots presents additional challenges for smoke detection, which necessitates the development of more advanced and reliable smoke detection technologies. This paper addresses this concern and presents a novel smoke detection technique designed for the demanding environment of outdoor parking lots. First, we develop a novel… More >

  • Open Access

    ARTICLE

    MG-YOLOv5s: A Faster and Stronger Helmet Detection Algorithm

    Zerui Xiao, Wei Liu, Zhiwei Ye*, Jiatang Yuan, Shishi Liu

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1009-1029, 2024, DOI:10.32604/csse.2023.040475

    Abstract Nowadays, construction site safety accidents are frequent, and wearing safety helmets is essential to prevent head injuries caused by object collisions and falls. However, existing helmet detection algorithms have several drawbacks, including a complex structure with many parameters, high calculation volume, and poor detection of small helmets, making deployment on embedded or mobile devices difficult. To address these challenges, this paper proposes a YOLOv5-based multi-head detection safety helmet detection algorithm that is faster and more robust for detecting helmets on construction sites. By replacing the traditional DarkNet backbone network of YOLOv5s with a new backbone… More >

  • Open Access

    ARTICLE

    YOLOv5ST: A Lightweight and Fast Scene Text Detector

    Yiwei Liu1, Yingnan Zhao1,*, Yi Chen1, Zheng Hu1, Min Xia2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 909-926, 2024, DOI:10.32604/cmc.2024.047901

    Abstract Scene text detection is an important task in computer vision. In this paper, we present YOLOv5 Scene Text (YOLOv5ST), an optimized architecture based on YOLOv5 v6.0 tailored for fast scene text detection. Our primary goal is to enhance inference speed without sacrificing significant detection accuracy, thereby enabling robust performance on resource-constrained devices like drones, closed-circuit television cameras, and other embedded systems. To achieve this, we propose key modifications to the network architecture to lighten the original backbone and improve feature aggregation, including replacing standard convolution with depth-wise convolution, adopting the C2 sequence module in place More >

  • Open Access

    ARTICLE

    A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model

    Yaoyao Du, Xiangkui Jiang*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 303-327, 2024, DOI:10.32604/cmc.2023.046068

    Abstract To address the challenges of high complexity, poor real-time performance, and low detection rates for small target vehicles in existing vehicle object detection algorithms, this paper proposes a real-time lightweight architecture based on You Only Look Once (YOLO) v5m. Firstly, a lightweight upsampling operator called Content-Aware Reassembly of Features (CARAFE) is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles, reducing the missed detection rate and false detection rate. Secondly, a new prediction layer for tiny targets is added, and the feature fusion network… More >

  • Open Access

    ARTICLE

    YOLO-DD: Improved YOLOv5 for Defect Detection

    Jinhai Wang1, Wei Wang1, Zongyin Zhang1, Xuemin Lin1, Jingxian Zhao1, Mingyou Chen1, Lufeng Luo2,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 759-780, 2024, DOI:10.32604/cmc.2023.041600

    Abstract As computer technology continues to advance, factories have increasingly higher demands for detecting defects. However, detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes. To address this issue, this paper proposes YOLO-DD, a defect detection model based on YOLOv5 that is effective and robust. To improve the feature extraction process and better capture global information, the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer (RDAT). Additionally, an Information Gap Filling Strategy (IGFS) is proposed to improve the… More >

  • Open Access

    ARTICLE

    Zero-DCE++ Inspired Object Detection in Less Illuminated Environment Using Improved YOLOv5

    Ananthakrishnan Balasundaram1,*, Anshuman Mohanty2, Ayesha Shaik1, Krishnadoss Pradeep2, Kedalu Poornachary Vijayakumar2, Muthu Subash Kavitha3

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2751-2769, 2023, DOI:10.32604/cmc.2023.044374

    Abstract Automated object detection has received the most attention over the years. Use cases ranging from autonomous driving applications to military surveillance systems, require robust detection of objects in different illumination conditions. State-of-the-art object detectors tend to fare well in object detection during daytime conditions. However, their performance is severely hampered in night light conditions due to poor illumination. To address this challenge, the manuscript proposes an improved YOLOv5-based object detection framework for effective detection in unevenly illuminated nighttime conditions. Firstly, the preprocessing strategies involve using the Zero-DCE++ approach to enhance lowlight images. It is followed… More >

  • Open Access

    ARTICLE

    Detection of Safety Helmet-Wearing Based on the YOLO_CA Model

    Xiaoqin Wu, Songrong Qian*, Ming Yang

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3349-3366, 2023, DOI:10.32604/cmc.2023.043671

    Abstract Safety helmets can reduce head injuries from object impacts and lower the probability of safety accidents, as well as being of great significance to construction safety. However, for a variety of reasons, construction workers nowadays may not strictly enforce the rules of wearing safety helmets. In order to strengthen the safety of construction site, the traditional practice is to manage it through methods such as regular inspections by safety officers, but the cost is high and the effect is poor. With the popularization and application of construction site video monitoring, manual video monitoring has been… More >

  • Open Access

    ARTICLE

    C2Net-YOLOv5: A Bidirectional Res2Net-Based Traffic Sign Detection Algorithm

    Xiujuan Wang1, Yiqi Tian1,*, Kangfeng Zheng2, Chutong Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1949-1965, 2023, DOI:10.32604/cmc.2023.042224

    Abstract Rapid advancement of intelligent transportation systems (ITS) and autonomous driving (AD) have shown the importance of accurate and efficient detection of traffic signs. However, certain drawbacks, such as balancing accuracy and real-time performance, hinder the deployment of traffic sign detection algorithms in ITS and AD domains. In this study, a novel traffic sign detection algorithm was proposed based on the bidirectional Res2Net architecture to achieve an improved balance between accuracy and speed. An enhanced backbone network module, called C2Net, which uses an upgraded bidirectional Res2Net, was introduced to mitigate information loss in the feature extraction… More >

  • Open Access

    ARTICLE

    A Transmission and Transformation Fault Detection Algorithm Based on Improved YOLOv5

    Xinliang Tang1, Xiaotong Ru1, Jingfang Su1,*, Gabriel Adonis2

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2997-3011, 2023, DOI:10.32604/cmc.2023.038923

    Abstract On the transmission line, the invasion of foreign objects such as kites, plastic bags, and balloons and the damage to electronic components are common transmission line faults. Detecting these faults is of great significance for the safe operation of power systems. Therefore, a YOLOv5 target detection method based on a deep convolution neural network is proposed. In this paper, Mobilenetv2 is used to replace Cross Stage Partial (CSP)-Darknet53 as the backbone. The structure uses depth-wise separable convolution toreduce the amount of calculation and parameters; improve the detection rate. At the same time, to compensate for… More >

Displaying 1-10 on page 1 of 32. Per Page