Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Lightweight YOLOv5 with ShuffleNetV2 for Rice Disease Detection in Edge Computing

    Qingtao Meng, Sang-Hyun Lee*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069970 - 10 November 2025

    Abstract This study proposes a lightweight rice disease detection model optimized for edge computing environments. The goal is to enhance the You Only Look Once (YOLO) v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency. To this end, a total of 3234 high-resolution images (2400 × 1080) were collected from three major rice diseases Rice Blast, Bacterial Blight, and Brown Spot—frequently found in actual rice cultivation fields. These images served as the training dataset. The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the… More >

  • Open Access

    ARTICLE

    Deep Architectural Classification of Dental Pathologies Using Orthopantomogram Imaging

    Arham Adnan1, Muhammad Tuaha Rizwan1, Hafiz Muhammad Attaullah1,2,*, Shakila Basheer3, Mohammad Tabrez Quasim4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5073-5091, 2025, DOI:10.32604/cmc.2025.068797 - 23 October 2025

    Abstract Artificial intelligence (AI), particularly deep learning algorithms utilizing convolutional neural networks, plays an increasingly pivotal role in enhancing medical image examination. It demonstrates the potential for improving diagnostic accuracy within dental care. Orthopantomograms (OPGs) are essential in dentistry; however, their manual interpretation is often inconsistent and tedious. To the best of our knowledge, this is the first comprehensive application of YOLOv5m for the simultaneous detection and classification of six distinct dental pathologies using panoramic OPG images. The model was trained and refined on a custom dataset that began with 232 panoramic radiographs and was later… More >

  • Open Access

    ARTICLE

    Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain

    Naveen Chandra1, Himadri Vaidya2,3, Suraj Sawant4, Shilpa Gite5,6, Biswajeet Pradhan7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3351-3375, 2025, DOI:10.32604/cmes.2025.064395 - 30 June 2025

    Abstract Landslide hazard detection is a prevalent problem in remote sensing studies, particularly with the technological advancement of computer vision. With the continuous and exceptional growth of the computational environment, the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning. Furthermore, attention models, driven by human visual procedures, have become vital in natural hazard-related studies. Hence, this paper proposes an enhanced YOLOv5 (You Only Look Once version 5) network for improved satellite-based landslide detection, embedded with two popular attention modules: CBAM (Convolutional Block Attention Module) More >

  • Open Access

    ARTICLE

    Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection

    Zijun Gao*, Zheyi Li, Chunqi Zhang, Ying Wang, Jingwen Su

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4353-4371, 2025, DOI:10.32604/cmc.2025.061743 - 19 May 2025

    Abstract Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks; however, their application in the actual agricultural production process is still challenging owing to the problems of inter-species similarity, multi-scale, and background complexity of pests. To address these problems, this study proposes an FD-YOLO pest target detection model. The FD-YOLO model uses a Fully Connected Feature Pyramid Network (FC-FPN) instead of a PANet in the neck, which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer, enhance large-scale target features in the… More >

  • Open Access

    ARTICLE

    YOLO-LFD: A Lightweight and Fast Model for Forest Fire Detection

    Honglin Wang1, Yangyang Zhang2,*, Cheng Zhu3

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3399-3417, 2025, DOI:10.32604/cmc.2024.058932 - 17 February 2025

    Abstract Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction… More >

  • Open Access

    ARTICLE

    GL-YOLOv5: An Improved Lightweight Non-Dimensional Attention Algorithm Based on YOLOv5

    Yuefan Liu, Ducheng Zhang, Chen Guo*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3281-3299, 2024, DOI:10.32604/cmc.2024.057294 - 18 November 2024

    Abstract Craniocerebral injuries represent the primary cause of fatalities among riders involved in two-wheeler accidents; nevertheless, the prevalence of helmet usage among these riders remains alarmingly low. Consequently, the accurate identification of riders who are wearing safety helmets is of paramount importance. Current detection algorithms exhibit several limitations, including inadequate accuracy, substantial model size, and suboptimal performance in complex environments with small targets. To address these challenges, we propose a novel lightweight detection algorithm, termed GL-YOLOv5, which is an enhancement of the You Only Look Once version 5 (YOLOv5) framework. This model incorporates a Global DualPooling… More >

  • Open Access

    ARTICLE

    An Improved Distraction Behavior Detection Algorithm Based on YOLOv5

    Keke Zhou, Guoqiang Zheng*, Huihui Zhai, Xiangshuai Lv, Weizhen Zhang

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2571-2585, 2024, DOI:10.32604/cmc.2024.056863 - 18 November 2024

    Abstract Distracted driving remains a primary factor in traffic accidents and poses a significant obstacle to advancing driver assistance technologies. Improving the accuracy of distracted driving can greatly reduce the occurrence of traffic accidents, thereby providing a guarantee for the safety of drivers. However, detecting distracted driving behaviors remains challenging in real-world scenarios with complex backgrounds, varying target scales, and different resolutions. Addressing the low detection accuracy of existing vehicle distraction detection algorithms and considering practical application scenarios, this paper proposes an improved vehicle distraction detection algorithm based on YOLOv5. The algorithm integrates Attention-based Intra-scale Feature… More >

  • Open Access

    ARTICLE

    A Novel YOLOv5s-Based Lightweight Model for Detecting Fish’s Unhealthy States in Aquaculture

    Bing Shi1,*, Jianhua Zhao1, Bin Ma1, Juan Huan2, Yueping Sun3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2437-2456, 2024, DOI:10.32604/cmc.2024.056377 - 18 November 2024

    Abstract Real-time detection of unhealthy fish remains a significant challenge in intensive recirculating aquaculture. Early recognition of unhealthy fish and the implementation of appropriate treatment measures are crucial for preventing the spread of diseases and minimizing economic losses. To address this issue, an improved algorithm based on the You Only Look Once v5s (YOLOv5s) lightweight model has been proposed. This enhanced model incorporates a faster lightweight structure and a new Convolutional Block Attention Module (CBAM) to achieve high recognition accuracy. Furthermore, the model introduces the α-SIoU loss function, which combines the α-Intersection over Union (α-IoU) and… More >

  • Open Access

    ARTICLE

    Special Vehicle Target Detection and Tracking Based on Virtual Simulation Environment and YOLOv5-Block+DeepSort Algorithm

    Mingyuan Zhai1,2, Hanquan Zhang1, Le Wang1, Dong Xiao1,*, Zhengmin Gu3, Zhenni Li1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3241-3260, 2024, DOI:10.32604/cmc.2024.056241 - 18 November 2024

    Abstract In the process of dense vehicles traveling fast, there will be mutual occlusion between vehicles, which will lead to the problem of deterioration of the tracking effect of different vehicles, so this paper proposes a research method of virtual simulation video vehicle target tracking based on you only look once (YOLO)v5s and deep simple online and realtime tracking (DeepSort). Given that the DeepSort algorithm is currently the most effective tracking method, this paper merges the YOLOv5 algorithm with the DeepSort algorithm. Then it adds the efficient channel attention networks (ECA-Net) focusing mechanism at the back… More >

  • Open Access

    ARTICLE

    YOLO-RLC: An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5

    Yuanyuan Wang1,2,*, Jialong Huang1, Md Sharid Kayes Dipu1, Hu Zhao3, Shangbing Gao1,2, Haiyan Zhang1,2, Pinrong Lv1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4973-4995, 2024, DOI:10.32604/cmc.2024.055839 - 12 September 2024

    Abstract Printed circuit boards (PCBs) provide stable connections between electronic components. However, defective printed circuit boards may cause the entire equipment system to malfunction, resulting in incalculable losses. Therefore, it is crucial to detect defective printed circuit boards during the generation process. Traditional detection methods have low accuracy in detecting subtle defects in complex background environments. In order to improve the detection accuracy of surface defects on industrial printed circuit boards, this paper proposes a residual large kernel network based on YOLOv5 (You Only Look Once version 5) for PCBs surface defect detection, called YOLO-RLC (You… More >

Displaying 1-10 on page 1 of 43. Per Page