Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    ARTICLE

    Effect of lead and zinc composition on the optical and structural characteristics of PbZnS thin films fabricated by spray pyrolysis

    S. Çelika,*, M. Temizb

    Chalcogenide Letters, Vol.22, No.1, pp. 89-96, 2025, DOI:10.15251/CL.2025.221.89

    Abstract In this study, PbZnS thin films with varying concentrations of lead (Pb) and zinc (Zn) were successfully produced using the spray pyrolysis method. The structural, optical and surface properties of the films were systematically investigated as a function of the Pb/Zn ratio. Xray diffraction (XRD) analysis confirmed the polycrystalline nature of the films, showing a cubic zinc blende structure with improved crystallinity as Pb content increased. Initially, with the increase in Pb concentration, larger crystallite sizes and decreased microstress were observed, but with the increase of Pb addition, the formation of secondary phases and the… More >

  • Open Access

    ARTICLE

    The importance of CdS and ZnO-NPs in study anti-microbial activity prepared by laser ablation and simple chemical method

    H. A. Ahmed, M. Y. Ali, S. S. Hamood, A. N. Abd*

    Chalcogenide Letters, Vol.22, No.1, pp. 11-22, 2025, DOI:10.15251/CL.2025.221.11

    Abstract As a potential substitute for antibiotics, cadmium sulfide and zinc oxide nano-particles (CdS and ZnO NPs) were created using laser ablation and a straightforward chemical process, respectively. Target of cadmium sulfide, deionized water, zinc nitrate, and sodium hydroxide were used as precursors. Different characterization techniques were used to characterize the CdS and ZnO NPs. X-ray diffraction was used to confirm that the CdS and ZnO had polycrystalline structures with average crystalline sizes of 54.16 nm and 29.23 nm, respectively. The ZnO particles were densely packed 2D curved nanopetals with a diameter of 51.65 nm, whereas… More >

  • Open Access

    ARTICLE

    Structural and optical properties of ZnS/rGO nanocomposites optoelectronic devices

    A. M. Abdel-Daiema, M. Ahmeda,, E. R. Shaabanb,

    Chalcogenide Letters, Vol.22, No.2, pp. 131-142, 2025, DOI:10.15251/CL.2025.222.131

    Abstract This paper investigates the impact of reduced graphene oxide (rGO) addition on the structural and optical properties of ZnS nanocomposites. The study began with the synthesis of graphene oxide (GO) through the oxidation of natural graphite powder. This process involved using potassium permanganate in a mixture of sulfuric and phosphoric acids, maintained at 50°C for 48 hours. The reaction was terminated using hydrogen peroxide, followed by purification and drying, yielding 1.5 grams of GO. The preparation of ZnS/GO nanocomposites involved dissolving zinc acetate and varying quantities of GO in water, adjusting the pH, and incorporating… More >

  • Open Access

    ARTICLE

    Evaluation of the structural and physical properties of CdxZn1-xS nanocomposites depending technological condition

    L. Gahramanlia,b,c,*, M. Muradova, G. Eyvazovaa, A. Karimovaa, M. Jafarovb

    Chalcogenide Letters, Vol.22, No.2, pp. 109-121, 2025, DOI:10.15251/CL.2025.222.109

    Abstract The study presents nanocomposite materials based on CdxZn1-xS, synthesized as thin films and nanoparticles through two distinct techniques—sonochemical and SILAR synthesis techniques. The characteristics of these materials were investigated using X-ray diffraction (XRD), Ultraviolet spectroscopy (UV-Vis), Fourier-transform infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). In the sonochemical approach, samples were prepared with three different stabilizers for comparative analysis to determine influence of type of the stabilizers. Meanwhile, the SILAR approach created thin layers with different components (distinctive x value-CdxZn1-xS) at various grown temperatures utilizing polyvinyl alcohol (PVA) as a substrate. At the same time, nanocomposite More >

  • Open Access

    ARTICLE

    Synthesis and photocatalytic performance of ZnS nanoparticles via electrospinning assisted hydrothermal technique

    T. L. Yanga, P. Y. Linb, Y. S. Fuc, C. Y. Luoc, K. C. Hsua,*

    Chalcogenide Letters, Vol.22, No.7, pp. 625-636, 2025, DOI:10.15251/CL.2025.227.625

    Abstract In this study, high-crystallinity zinc sulfide (ZnS) at the nanoscale was synthesized using a combination of electrospinning and hydrothermal techniques. Initially, polyvinyl butyral (PVB)/ZnS composite nanofibers were fabricated via electrospinning. Subsequently, a hydrothermal reaction was employed to induce a dissolution-recrystallization mechanism, enabling the gradual formation of highly crystalline ZnS nanoparticles. The structural, morphological, and compositional characteristics of the ZnS nanoparticles were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Finally, the photocatalytic activity of three different ZnS materials—synthesized via electrospinning, hydrothermal treatment, and hydrothermal-assisted electrospinning—were More >

  • Open Access

    ARTICLE

    Preparation of ZnS-Carbon nanotube nanocomposites via solvothermal method and their application in electrochemical detection of escherichia coli O157:H7

    F. F. Tonga,*, J. L. Hanb

    Chalcogenide Letters, Vol.22, No.8, pp. 719-733, 2025, DOI:10.15251/CL.2025.228.719

    Abstract In this study, hierarchical ZnS–CNT hybrids were synthesized via a solvothermal reaction at 180 °C for 48 h, producing ∼200 nm ZnS spheres uniformly anchored onto oxidized multiwalled carbon nanotubes. Structural analyses by XRD confirmed the cubic sphalerite phase, while SEM and TEM revealed a “pearl-necklace” morphology and effective nanoparticle dispersion. XPS spectra verified Zn2+ and oxygen-containing surface groups on the composite. Nitrogen adsorption–desorption measurements showed that incorporating CNTs transformed the material’s isotherm from type III to type IV, increasing the BET surface area from 68 to 155 m2 /g and introducing mesoporosity. When drop-cast onto More >

  • Open Access

    ARTICLE

    3D/3D C-MoO2/Cd0.9Zn0.1S composite with an S-scheme electron transfer pathway enables highly efficient photocatalytic hydrogen evolution

    C. M. Fua, M. Z. Geb, X. Q. Zhangc, W. Yanc,*

    Chalcogenide Letters, Vol.22, No.8, pp. 665-677, 2025, DOI:10.15251/CL.2025.228.665

    Abstract Constructing heterojunctions represents a crucial strategy for enhancing semiconductor photocatalysts. In this study, the C-MoO2/Cd0.9Zn0.1S S-scheme heterojunction composite was successfully fabricated through a self-assembly approach. XPS analysis confirmed the spontaneous transfer of intrinsic electrons from Cd0.9Zn0.1S to C-MoO2 in the dark, establishing an internal electric field at the C-MoO2/Cd0.9Zn0.1S interface. Under visible light irradiation, the C-MoO2/Cd0.9Zn0.1S composite exhibited significantly enhanced hydrogen evolution activity, achieving a 6.3-fold improvement compared to pristine Cd0.9Zn0.1S. PL, TRPL, and electrochemical measurements collectively demonstrated that the incorporation of C-MoO2 effectively suppressed the recombination of photogenerated electrons in Cd0.9Zn0.1S. The outstanding photocatalytic performance and improved charge More >

  • Open Access

    ARTICLE

    ZnO/ZnS sensor with broadband visible response for flexible polyethylene terephthalate substrates combined with artificial intelligence analysis

    X. Y. Chena,b, Y. H. Caia, Y. S. Chenc, S. J. Huangb, M. H. Lid, Y. H. Lie, C. H. Linc, H. Chena,*

    Chalcogenide Letters, Vol.22, No.9, pp. 777-785, 2025, DOI:10.15251/CL.2025.229.777

    Abstract This study focuses on the development of zinc oxide (ZnO)/zinc sulfide (ZnS) core-shell structures on flexible polyethylene terephthalate (PET) substrates for enhanced light sensing. PET offers high elasticity, optical transparency, and chemical resistance, making it ideal for wearable optoelectronics. By optimizing the vulcanization process, a uniform ZnS shell is formed on the exposed regions of ZnO nanorods (NRs), significantly enhancing ZnO-based sensor’s sensitivity to visible light, especially red light (peak wavelength at 630 nm). Structural and spectral analyses confirm the successful formation of the ZnO/ZnS heterostructure, improved charge separation, and broadened light response. To improve More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Cu2ZnSnS4 (CZTS) Thin Films for Gas Sensor Applications

    F. T. Ibrahim1,*, A. A. Qassim2, S. M. A. Al-Dujayli1

    Chalcogenide Letters, Vol.22, No.11, pp. 929-937, 2025, DOI:10.15251/CL.2025.2211.929

    Abstract This work, pulse laser deposition technique was employee to synthesize Cu2ZnSnS4 (CZTS) thin films with different lasing energy (500, 600, 700, 800, 900 mJ). Through using different characterization technique to study structural, optical and gas sensing properties. the use of X-ray diffraction, the samples have polycrystalline with cubic structure. The EDX examination showed that the sample contains a suitable amount of Zn, Sn, Cu, and S atoms to form CZTS. UV-VIS measurement indicates that the synthesis of thin films employing a lower laser energy result in a drop in deposit sample thickness, which in turn More >

  • Open Access

    ARTICLE

    Thin-Film Solar Cell Based on Sb2(Sx,Se1−x)3 Solid Solution Films

    T. M. Razykov1, K. M. Kuchkarov1, R. T. Yuldoshov1, M. P. Pirimmatov1, R. R. Khurramov1, D. Z. Isakov1, M. A. Makhmudov1, A. Matmuratov1, J. G. Bekmirzoyev1, A. N. Olimov2

    Chalcogenide Letters, Vol.22, No.11, pp. 959-964, 2025, DOI:10.15251/CL.2025.2211.959

    Abstract This work presents the results of investigating the photovoltaic characteristics of Sb2(SxSe1−x)3 thin film solar cells manufactured on glass substrates with molybdenum coating using the chemical molecular beam deposition method. Illuminated IV and spectral response measurements on Sb2(SxSe1−x)3 alloy films show that the device with S/(S + Se) = 0.6 delivers the best performance, reaching 6.47% power-conversion efficiency with VOC = 523 mV, JSC = 27.2 mA cm−2 , and a fill factor of 46.71%. More >

Displaying 1-10 on page 1 of 85. Per Page