Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (547)
  • Open Access

    A Global Training Model for Beat Classification Using Basic Electrocardiogram Morphological Features

    Shubha Sumesh1, John Yearwood1, Shamsul Huda1 and Shafiq Ahmad2,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4503-4521, 2022, DOI:10.32604/cmc.2022.015474 - 11 October 2021

    Abstract

    Clinical Study and automatic diagnosis of electrocardiogram (ECG) data always remain a challenge in diagnosing cardiovascular activities. The analysis of ECG data relies on various factors like morphological features, classification techniques, methods or models used to diagnose and its performance improvement. Another crucial factor in the methodology is how to train the model for each patient. Existing approaches use standard training model which faces challenges when training data has variation due to individual patient characteristics resulting in a lower detection accuracy. This paper proposes an adaptive approach to identify performance improvement in building a training model

    More >

  • Open Access

    ARTICLE

    Hybrid Online Model for Predicting Diabetes Mellitus

    C. Mallika1,*, S. Selvamuthukumaran2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1873-1885, 2022, DOI:10.32604/iasc.2022.020543 - 09 October 2021

    Abstract Modern healthcare systems have become smart by synergizing the potentials of wireless sensors, the medical Internet of things, and big data science to provide better patient care while decreasing medical expenses. Large healthcare organizations generate and accumulate an incredible volume of data continuously. The already daunting volume of medical information has a massive amount of diagnostic features and logged details of patients for certain diseases such as diabetes. Diabetes mellitus has emerged as along-haul fatal disease across the globe and particularly in developing countries. Exact and early diagnosis of diabetes from big medical data is… More >

  • Open Access

    ARTICLE

    Design and Analysis of 4-bit 1.2GS/s Low Power CMOS Clocked Flash ADC

    G. Prathiba1,*, M. Santhi2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1611-1626, 2022, DOI:10.32604/iasc.2022.018975 - 09 October 2021

    Abstract High-quality, high-resolution flash ADCs are used in reliable VLSI (Very Large-Scale Integrated) circuits to minimize the power consumption. An analogue electrical signal is converted into a discrete-valued sequence by these ADCs. This paper proposes a four-bit 1.2GS/s low-power Clocked Flash ADC (C-FADC). A low-power Clocked-Improved Threshold Inverter Quantization (CITIQ) comparator, an Adaptive Bubble Free (ABF) logic circuit, and a compact Binary Encoder (BE) are all part of the presented structure. A clock network in the comparator circuit reduces skew and jitters, while an ABF logic circuit detects and corrects fourth order bubble faults detected from More >

  • Open Access

    ARTICLE

    Adaptive Scheme for Crowd Counting Using off-the-Shelf Wireless Routers

    Wei Zhuang1,2, Yixian Shen1, Chunming Gao3, Lu Li1, Haoran Sang4, Fei Qian5,*

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 255-269, 2022, DOI:10.32604/csse.2022.020590 - 08 October 2021

    Abstract Since the outbreak of the world-wide novel coronavirus pandemic, crowd counting in public areas, such as in shopping centers and in commercial streets, has gained popularity among public health administrations for preventing the crowds from gathering. In this paper, we propose a novel adaptive method for crowd counting based on Wi-Fi channel state information (CSI) by using common commercial wireless routers. Compared with previous researches on device-free crowd counting, our proposed method is more adaptive to the change of environment and can achieve high accuracy of crowd count estimation. Because the distance between access point More >

  • Open Access

    ARTICLE

    Speech Recognition-Based Automated Visual Acuity Testing with Adaptive Mel Filter Bank

    Shibli Nisar1, Muhammad Asghar Khan2,*, Fahad Algarni3, Abdul Wakeel1, M. Irfan Uddin4, Insaf Ullah2

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2991-3004, 2022, DOI:10.32604/cmc.2022.020376 - 27 September 2021

    Abstract One of the most commonly reported disabilities is vision loss, which can be diagnosed by an ophthalmologist in order to determine the visual system of a patient. This procedure, however, usually requires an appointment with an ophthalmologist, which is both time-consuming and expensive process. Other issues that can arise include a lack of appropriate equipment and trained practitioners, especially in rural areas. Centered on a cognitively motivated attribute extraction and speech recognition approach, this paper proposes a novel idea that immediately determines the eyesight deficiency. The proposed system uses an adaptive filter bank with weighted… More >

  • Open Access

    ARTICLE

    An Efficient Reference Free Adaptive Learning Process for Speech Enhancement Applications

    Girika Jyoshna1,*, Md. Zia Ur Rahman1, L. Koteswararao2

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3067-3080, 2022, DOI:10.32604/cmc.2022.020160 - 27 September 2021

    Abstract In issues like hearing impairment, speech therapy and hearing aids play a major role in reducing the impairment. Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy. During the transmission of speech signals, several noise components contaminate the actual speech components. This paper addresses a new adaptive speech enhancement (ASE) method based on a modified version of singular spectrum analysis (MSSA). The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component. The MSSA adopts three key… More >

  • Open Access

    ARTICLE

    Image Segmentation Based on Block Level and Hybrid Directional Local Extrema

    Ghanshyam Raghuwanshi1, Yogesh Gupta2, Deepak Sinwar1, Dilbag Singh3, Usman Tariq4, Muhammad Attique5, Kuntha Pin6, Yunyoung Nam7,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3939-3954, 2022, DOI:10.32604/cmc.2022.018423 - 27 September 2021

    Abstract In the recent decade, the digitalization of various tasks has added great flexibility to human lifestyle and has changed daily routine activities of communities. Image segmentation is a key step in digitalization. Segmentation plays a key role in almost all areas of image processing, and various approaches have been proposed for image segmentation. In this paper, a novel approach is proposed for image segmentation using a nonuniform adaptive strategy. Region-based image segmentation along with a directional binary pattern generated a better segmented image. An adaptive mask of 8 × 8 was circulated over the pixels whose bit… More >

  • Open Access

    ARTICLE

    I-Quiz: An Intelligent Assessment Tool for Non-Verbal Behaviour Detection

    B. T. Shobana1,*, G. A. Sathish Kumar2

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 1007-1021, 2022, DOI:10.32604/csse.2022.019523 - 24 September 2021

    Abstract Electronic learning (e-learning) has become one of the widely used modes of pedagogy in higher education today due to the convenience and flexibility offered in comparison to traditional learning activities. Advancements in Information and Communication Technology have eased learner connectivity online and enabled access to an extensive range of learning materials on the World Wide Web. Post covid-19 pandemic, online learning has become the most essential and inevitable medium of learning in primary, secondary and higher education. In recent times, Massive Open Online Courses (MOOCs) have transformed the current education strategy by offering a technology-rich… More >

  • Open Access

    ARTICLE

    An Adaptive Fuzzy Control Model for Multi-Joint Manipulators

    Yanzan Han1,*, Huawen Zhang1, Zengfang Shi1, Shuang Liang2

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 1043-1057, 2022, DOI:10.32604/csse.2022.017742 - 24 September 2021

    Abstract Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics, random disturbances and load variations. To account for uncertain disturbances in the operation of manipulators, we propose an adaptive manipulator control method based on a multi-joint fuzzy system, in which the upper bound information of the fuzzy system is constant and the state variables of the manipulator control system are measurable. The control algorithm of the system is a MIMO (multi-input-multi-output) fuzzy system that can approximate system error by using a robust adaptive control law to eliminate the shadow caused by approximation error. More >

  • Open Access

    ARTICLE

    Adaptive Sliding Mode Control Method for Onboard Supercapacitors System

    Yanzan Han1,*, Hang Zhou1, Zengfang Shi1, Shuang Liang2

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 1099-1108, 2022, DOI:10.32604/csse.2022.017741 - 24 September 2021

    Abstract Urban rail trains have undergone rapid development in recent years due to their punctuality, high capacity and energy efficiency. Urban trains require frequent start/stop operations and are, therefore, prone to high energy losses. As trains have high inertia, the energy that can be recovered from braking comes in short bursts of high power. To effectively recover such braking energy, an onboard supercapacitor system based on a radial basis function neural network-based sliding mode control system is proposed, which provides robust adaptive performance. The supercapacitor energy storage system is connected to a bidirectional DC/DC converter to More >

Displaying 361-370 on page 37 of 547. Per Page