Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (68)
  • Open Access

    ARTICLE

    Porosity-Impact Strength Relationship in Material Extrusion: Insights from MicroCT, and Computational Image Analysis

    Jia Yan Lim1,2, Siti Madiha Muhammad Amir3, Roslan Yahya3, Marta Peña Fernández2, Tze Chuen Yap1,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070707 - 09 December 2025

    Abstract Additive Manufacturing, also known as 3D printing, has transformed conventional manufacturing by building objects layer by layer, with material extrusion or fused deposition modeling standing out as particularly popular. However, due to its manufacturing process and thermal nature, internal voids and pores are formed within the thermoplastic materials being fabricated, potentially leading to a decrease in mechanical properties. This paper discussed the effect of printing parameters on the porosity and the mechanical properties of the 3D printed polylactic acid (PLA) through micro-computed tomography (microCT), computational image analysis, and Charpy impact testing. The results for both… More >

  • Open Access

    PROCEEDINGS

    Vat Photopolymerization 3D Printing of NiO-YSZ Anode for Solid Oxide Fuel Cells

    Jinsi Yuan, Haijiang Wang*, Jiaming Bai*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-2, 2025, DOI:10.32604/icces.2025.011073

    Abstract Solid oxide fuel cells (SOFCs) have attracted considerable attention for their high efficiency, environmental advantages, and versatility in fuel sources. Research has shown that optimizing the structure of SOFCs can lead to significant performance improvements. Additive manufacturing (AM) has emerged as a promising technology for geometrical optimization of SOFCs, owing to its capability to create complex and programmable structures. However, fabricating three-dimensional electrode structures with fine, highly resolved features remains a significant challenge. Herein, a vat photopolymerization (VPP) 3D printing process was developed for fabricating the Nickel Oxide-Yttria Stabilized Zirconia (NiO-YSZ) anode structure of SOFC.… More >

  • Open Access

    PROCEEDINGS

    Internal Connection Between the Microstructures and the Mechanical Properties in Additive Manufacturing

    Yifei Wang, Zhao Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011121

    Abstract Additive manufacturing (AM) reveals high anisotropy in mechanical properties due to the thermal accumulation induced microstructures. How to reveal the internal connection between the microstructures and the mechanical properties in additive manufacturing is a challenge. There are many methods to predict the mechanical properties based on the microstructural evolutions in additive manufacturing [1–3]. Here we summarized the main methods for the prediction of the mechanical properties in additive manufacturing, including crystal plasticity finite element method (CPFEM), dislocation dynamics (DD), and molecular dynamics (MD). We systematically examine these primary approaches for mechanical property predictions in AM,… More >

  • Open Access

    PROCEEDINGS

    The Phase Field Method for the Simulation of Grain Structures in Additive Manufacturing

    Xiang Gao, Zhao Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011092

    Abstract Microstructures is the key factor determining the properties of the additively manufactured components [1]. It can be highly affected by the temperatures generated during the additive manufacturing process. Phase field method, as established based on Ginzburg-Landau theory is an efficient tool to simulate the microstructural evolutions in additive manufacturing [2]. It can be used to simulate solidification, diffusion, phase transformation and grain growth [3]. Here we compared the new progress on the phase field method in the field of additive manufacturing. Due to the differences between the temperature field and the grain field, how to… More >

  • Open Access

    PROCEEDINGS

    Evaluating the Degradation Behavior of Additive Manufacturing Zn Alloys for Biomedical Application

    Kaiyang Li1, Renjing Li1, Hui Wang2, Naiqiang Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012643

    Abstract Zn is a promising biomedical implant for its good biocompatibility, moderate mechanical strength, and suitable degradation rate. As a novel fabricating method, Additive Manufacturing (AM) could prepare biomedical Zn by raw powder deposition, melting, and molten pool solidification in a layer-by-layer pattern, which favors the customized shape and well-controlled geometry of the final product. Meanwhile, the rapid heating and solidification from AM often induces unique structural changes compared with traditional fabrication techniques, thus subsequently affecting the degradation behavior. Still, setting up the correlations among AM fabrication, structural changes and degradation behavior of Zn remains a… More >

  • Open Access

    ARTICLE

    A Multi-Sensor and PCSV Asymptotic Classification Method for Additive Manufacturing High Precision and Efficient Fault Diagnosis

    Lingfeng Wang1, Dongbiao Li2, Fei Xing1,3,*, Qiang Wang4, Jianjun Shi5

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1183-1201, 2025, DOI:10.32604/sdhm.2025.063701 - 05 September 2025

    Abstract With the intelligent upgrading of manufacturing equipment, achieving high-precision and efficient fault diagnosis is essential to enhance equipment stability and increase productivity. Online monitoring and fault diagnosis technology play a critical role in improving the stability of metal additive manufacturing equipment. However, the limited proportion of fault data during operation challenges the accuracy and efficiency of multi-classification models due to excessive redundant data. A multi-sensor and principal component analysis (PCA) and support vector machine (SVM) asymptotic classification (PCSV) for additive manufacturing fault diagnosis method is proposed, and it divides the fault diagnosis into two steps.… More >

  • Open Access

    ARTICLE

    An Optimization-Driven Design Scheme of Lightweight Acoustic Metamaterials for Additive Manufacturing

    Ying Zhou1, Jiayang Yuan1, Zhengtao Shu1, Mengli Ye1, Liang Gao1, Qiong Wang2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 557-580, 2025, DOI:10.32604/cmc.2025.067761 - 29 August 2025

    Abstract Simultaneously, reducing an acoustic metamaterial’s weight and sound pressure level is an important but difficult topic. Considering the law of mass, traditional lightweight acoustic metamaterials make it difficult to control noise efficiently in real-life applications. In this study, a novel optimization-driven design scheme is developed to obtain lightweight acoustic metamaterials with a strong sound insulation capability for additive manufacturing. In the proposed design scheme, a topology optimization method for an acoustic metamaterial in the acoustic-solid interaction system is implemented to obtain an initial cross-sectional topology of the acoustic microstructure during the conceptual design phase. Then, More >

  • Open Access

    ARTICLE

    Mechanical Performance of Additive Manufactured TPMS Lattice Structures Based on Topology Optimization

    Yizhou Wang1, Qinghai Zhao2,*, Guoqing Li1, Xudong Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 763-789, 2025, DOI:10.32604/cmes.2025.067363 - 31 July 2025

    Abstract Lattice structures have attracted extensive attention in the field of engineering materials due to their characteristics of lightweight and high strength. This paper combines topology optimization with additive manufacturing to investigate how pore shape in Triply Periodic Minimal Surface (TPMS) structures affects mechanical properties and energy absorption performance. The periodic lattice structures (Triangle lattice, rectangle lattice and Rectangle lattice) and aperiodic mixed structures are designed, including a variety of lattice structures such as circle-circle and triangle-triangle (CCTT), triangle-triangle and rectangle-rectangle (TTRR), circle-circle and rectangle-rectangle (CCRR), triangle-circle-circle-triangle (TCCT), rectangle-triangle-triangle-rectangle (RTTR) and rectangle-circle-circle-rectangle (RCCR). The anisotropy of… More >

  • Open Access

    REVIEW

    Fatigue Resistance in Engineering Components: A Comprehensive Review on the Role of Geometry and Its Optimization

    Ibrahim T. Teke1,2, Ahmet H. Ertas2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 201-237, 2025, DOI:10.32604/cmes.2025.066644 - 31 July 2025

    Abstract Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading. While earlier studies mainly examined material properties and how stress affects lifespan, this review offers the first comprehensive, multiscale comparison of strategies that optimize geometry to improve fatigue performance. This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets, notches, and overall structural layouts. We analyze and combine various methods, including topology and shape optimization, the ability of additive manufacturing to fine-tune internal geometries, and reliability-based More >

  • Open Access

    REVIEW

    Additive Manufacturing of Polymer Metamaterials for Vibration Isolation: A Review

    Jiefei Huang1, Hao Zhou1, Mengying Chen1, Lei Yang1,2,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 307-338, 2025, DOI:10.32604/jpm.2025.062620 - 14 July 2025

    Abstract Vibration isolation is vital in engineering machinery, as it not only seriously affects the service life of machine components but also reduces the operating efficiency. Recently, metamaterials have been proposed for customized vibration-isolation needs through various functional designs. As a synthetic material, polymer materials have the advantages of good elasticity, low density, high specific strength, good corrosion resistance and easy processing, making it an ideal raw material for vibration-isolation metamaterials. At the same time, the rapid development of additive manufacturing (AM) provides a feasible method for preparing polymeric vibration-isolation metamaterials with complex structures. In this More >

Displaying 1-10 on page 1 of 68. Per Page