Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access

    ARTICLE

    Revolutionizing Biodegradable and Sustainable Materials: Exploring the Synergy of Polylactic Acid Blends with Sea Shells

    Prashanth K P1,*, Rudresh M2, Venkatesh N3, Poornima Gubbi Shivarathri4, Shwetha Rajappa5

    Journal of Renewable Materials, Vol.12, No.12, pp. 2115-2134, 2024, DOI:10.32604/jrm.2024.055437 - 20 December 2024

    Abstract This study explores the mechanical properties of a novel composite material, blending polylactic acid (PLA) with sea shells, through a comprehensive tensile test analysis. The tensile test results offer valuable insights into the material’s behavior under axial loading, shedding light on its strength, stiffness, and deformation characteristics. The results suggest that the incorporation of sea shells decrease the tensile strength of 14.55% and increase the modulus of 27.44% for 15 wt% SSP (sea shell powder) into PLA, emphasizing the reinforcing potential of the mineral-rich sea shell particles. However, a potential trade-off between decreased strength and… More >

  • Open Access

    PROCEEDINGS

    Material-Structure Integrated Additive Manufacturing of Bio-Inspired Lightweight Metallic Components for Aerospace Applications

    Dongdong Gu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013403

    Abstract In this presentation, we will report our recent research progress and prospect in the fields of laser additive manufacturing (AM) / 3D printing (3DP) of high-performance/multi-functional lightweight metallic components for aerospace applications. The innovative elements of AM including multi-material layout, innovative structural design, tailored printing process, and resultant high performance and multiple functions of components will be addressed. For a tailored printing process, some key scientific issues in AM process control deserve to be studied, including interaction of energy and printed matter, thermodynamic and dynamic behavior of printing, relationship of process parameters, microstructure and properties. More >

  • Open Access

    PROCEEDINGS

    Additively Manufactured Dual-Faced Structured Fabric for Shape-Adaptive Protection

    Yuanyuan Tian1,2, Kun Zhou1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013372

    Abstract Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, we leverage the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of three-dimensional re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J/kg and 5900 N·m/kg, respectively, together with an excellent recovery ratio of ~80%, thereby overcoming the strength–recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range More >

  • Open Access

    PROCEEDINGS

    Additive Manufacturing of Stents for the Coarctation of Aorta

    Yi Huang1, Giovanni Biglino1, Fengyuan Liu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013295

    Abstract Coarctation of aorta (CoA) is one of the congenital heart diseases with a proportion of 5% to 10%, which has a prevalence of four per 10,000 babies. As the most common cardiac defect missed at routine physical exams, CoA has a high undiagnosed rate of 60% to 80% in newborns before hospital discharge. The insertion of bare metal stents (BMS) with balloon dilatation is the useful method to reopen the narrow area of aorta. However, the stented vessel has a fixed diameter and cannot grow with the age, resulting in a relative restenosis and frequent… More >

  • Open Access

    PROCEEDINGS

    Wire Arc Directed Energy Deposited High Performance Aluminium Alloy

    Xuewei Fang1,2,*, Jiannan Yang1, Ke Huang1, Bingheng Lu1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012410

    Abstract Wire and Arc Additive Manufacturing (WAAM) technology has the advantages of high-efficiency and low-cost to fabricate large-scaled components with medium-complexity. 2319 aluminum alloy is a widely used in aerospace and military industries. Problems of porosity, residual stress, distortion, and poor mechanical properties were focused on in this paper. The mechanism of defect formation during fabrication and strengthening mechanism of peening process were investigated. In order to learn the droplet transfer and molten pool flow behavior, CFD models of molten pools for the pulse mode of CMT (CMT + P) and pulse reverse polarity CMT mode… More >

  • Open Access

    PROCEEDINGS

    Mechanism of Crack Resistance and Strength-Ductility in Additive Manufacturing of High Entropy Alloys

    Pengda Niu1, Ruidi Li1,*, Tiechui Yuan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012243

    Abstract In terms of grain refinement and component shape complexity, laser additive manufacturing (AM) is unmatched. This is exemplified by laser powder bed fusion (LPBF), whose rapid solidification and non-equilibrium metallurgy have expanded the understanding of ultra-fine grains and sub-stable organization among academics. At present, the reliability of LPBF components is being questioned by the industry due to the rapid heating and cooling cycles in AM processing, coupled with the extreme non-equilibrium heat-fluid-mass process, which renders LPBF printing vulnerable to metallurgical defects like microcracks and porosity. A significant impediment to the development of LPBF lies in… More >

  • Open Access

    PROCEEDINGS

    Additive Manufacturing of Energy Storage Devices

    Xiaocong Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, 2024, DOI:10.32604/icces.2024.011810

    Abstract With the ever-growing demand for miniature electronics and portable devices, the need for new types of micro-sized, low-cost and high-performance electrochemical energy storage devices becomes a cutting-edge research frontier. Advanced manufacturing technology (such as 3D printing) has brought broad application prospects and new opportunities to the construction of advanced electrochemical energy storage materials and devices. With a focus on “advanced manufacturing of new energy storage materials and devices”, we carried out interdisciplinary research on 3D/4D printing of wearable miniature batteries and supercapacitors, integrable energy devices and systems. Notably, a universal 3D printing approach towards advanced More >

  • Open Access

    PROCEEDINGS

    Programmable Mechanical Properties of Additive Manufactured Novel Steel

    Jinlong Su1,2, Chaolin Tan2,*, Swee Leong Sing1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012733

    Abstract Tailoring thermal history during additive manufacturing (AM) offers a viable approach to customising the microstructure and properties of materials without changing alloy compositions, which is generally overlooked as it is hard to achieve in commercial materials. In this work, a customised Fe-Ni-Ti-Al maraging steel with rapid precipitation kinetics offers the opportunity to leverage thermal history during AM for achieving large-range tunable strength-ductility combinations without post heat treatment or changing alloy chemistry. The Fe-Ni-Ti-Al maraging steel was processed by laser-directed energy deposition (LDED) with different deposition strategies to tailor the thermal history. As the phase transformation… More >

  • Open Access

    PROCEEDINGS

    Numerical Study of Fracture Mechanisms in Metal Powder Bed Fusion Additive Manufacturing Processes

    Lu Liu1, Bo Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012741

    Abstract Powder-Bed Fusion (PBF) is a prominent metal additive manufacturing technology known for its adaptability and commercial viability. However, it is often hindered by defects such as voids, un-melted particles, microcracking, and columnar grains, which are generally more pronounced than those found in traditional manufacturing methods. Microcracking, in particular, poses a significant challenge, limiting the use of PBF materials in safety-critical applications across various industries. This study presents an advanced computational framework that effectively addresses the complex interactions of thermal, fluid dynamics, structural mechanics, crystallization, and fracture phenomena at meso and macroscopic levels. This framework has More >

  • Open Access

    PROCEEDINGS

    High-Resolution Multi-Metal 3D Printing: A Novel Approach Using Binder Jet Printing and Selecting Laser Melting in Powder Bed Fusion

    Beng-Loon Aw1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011990

    Abstract This study introduces a novel method that combines Binder Jet Printing (BJP) and Selective Laser Melting (SLM) techniques to achieve unprecedented high-speed and high-resolution 3D printing of fine metal powders in Laser Powder Bed Fusion (LPBF). Our approach comfortably attains a resolution of 0.2 mm, enabling the selective deposition of fine powder (D50: 30 µm) made from multiple materials within a single print layer. We demonstrate the capability of this technique through the printing of a composite structure composed of copper alloy and 18Ni300 Maraging tool steel, showcasing its potential for fast-cooling tooling applications. The More >

Displaying 1-10 on page 1 of 54. Per Page