Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Waste Heat Recovery from a Drier Receiver of an A/C Unit Using Thermoelectric Generators

    Ali Jaber Abdulhamed1,*, Aws Al-Akam1, Ahmed A. Abduljabbar2, Mohammed H. Alkhafaji3

    Energy Engineering, Vol.120, No.8, pp. 1729-1746, 2023, DOI:10.32604/ee.2023.029069

    Abstract Thermoelectric generators (TEGs) are considered promising devices for waste heat recovery from various systems. The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver (FDR) of an air conditioning (A/C) system, which would otherwise go to waste. The study aims to build a set of thermoelectric generators (TEG) to collect the waste heat of the FDR and generate low-power electricity. A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging. The thermoelectric generator (TEGs) was installed on the FDR of… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY THE PERFORMANCE OF HYBRID SERPENTINE SOLAR COLLECTOR IN AIR CONDITIONING SYSTEM

    Hawraa T. Gateaa , Atheer S. Hassona, Adil A. Alwanb, Mohammed Y. Jabbarb, Azher M. Abeda

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.5

    Abstract The present work is an experimental study into the thermal performance of air conditioning system (split unit), bases on using renewable energy as an assisted facter. The serpentine tube flat plate solar collector (STFPSC) is combined with 1-ton capacity split air conditioning system, which is installed after the compressor to superheat the refrigerant that leaves the compressor. The conventional air conditioning (A/C) system is compared with the suggested system. The results show that the coefficient of performance (COP) of the solar assisted air conditioning system (SAAC), is affected by the enhancement of the solar collector, which enrolls the effect of… More >

  • Open Access

    ARTICLE

    REQUIRED THERMAL COMFORT CONDITIONS INSIDE HOSPITAL OPERATING ROOMS (ORS): A NUMERICAL ASSESSMENT

    Albio D. Gutierreza,*, Hayri Sezerb, Jose L. Ramirezc

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-12, 2022, DOI:10.5098/hmt.18.4

    Abstract This paper presents a computational model along with a thermal comfort criterion aimed at assisting the design of operating rooms (ORs) from the perspective of meeting suitable flow patterns and thermal comfort conditions for the occupants. The computational model is based on the finite volume method (FVM) to describe the air inside ORs along with the human thermoregulation model implemented in virtual mannequins for thermal comfort. The air model considers turbulent fluid motion, species transport and the conservation of energy, including thermal radiation. The human thermoregulation model incorporates two interacting systems of thermoregulation. Namely, the passive system and the active… More >

  • Open Access

    ARTICLE

    PHOTOVOLTAIC VAPOR COMPRESSION AIR CONDITIONING SYSTEM WITH PHASE CHANGE MATERIAL (PCM) STORAGE TANK

    Ghaith Yahya Abusaibaaa , Kamaruzzaman Sopiana,*, Hasila Jarimia , Adnan Ibrahima, Saffa Riffatb

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-6, 2023, DOI:10.5098/hmt.20.21

    Abstract This study will demonstrate the performance of a photovoltaic (PV) powered vapour compression cooling system connected to a Phase Change Material (PCM) storage tank. Three options were studied, namely (a) PV vapour compression with a PCM storage tank and an air-conditioned room with chilled water circulation with transparent membrane/desiccant; (b) PV vapour compression with a PCM storage tank and an air-conditioned room with chilled air dehumidification; and (c) PV vapour compression with a PCM storage tank and an air-conditioned room chilled by combined water circulation, a transparent membrane/desiccant, and air duct dehumidification. Simulation using TRNSYS, TRNBuild, and EES programmes has… More >

  • Open Access

    ARTICLE

    Research on Optimal Matching of Heating Ventilation Air Conditioning System Based on Energy Saving Requirements

    Dongsheng Xu*

    Energy Engineering, Vol.117, No.3, pp. 143-152, 2020, DOI:10.32604/EE.2020.010335

    Abstract With the continuous development of society and the progress of science and technology, the living standards of the people also constantly improve, people pay more and more attention to the pursuit of material life, and the living space of everyday life and office space requirements are also rising, the air conditioning has become the essential in people’s daily life a kind of electrical equipment. The traditional optimal matching methods of heating, ventilation, air conditioning (HVAC) system have common problems such as long matching time, low matching accuracy and many matching times. The application of the best matching method of HAVC… More >

  • Open Access

    ARTICLE

    Simulation of the Thermal Environment and Velocity Distribution in a Lecture Hall

    Guolin Li*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 549-559, 2020, DOI:10.32604/fdmp.2020.09219

    Abstract The rational design of heating ventilation and air conditioning systems is an important means to achieve energy conservation and sustainable development. The simulation of air-conditioning systems with finite element methods has gradually become an important auxiliary means of complex airspace design. In this paper, a k-ε turbulence model is used to conduct 3D simulations and optimize the summer air conditioning system of a lecture hall. Various conditions are considered in terms of fresh air temperature and flow rate towards the end to improve comfort. The approach used in this paper could also be used in the future as an auxiliary… More >

  • Open Access

    ARTICLE

    Study of the Aeraulic Flows in a Building Including Heating and Air Conditioning Systems

    N. Laaroussi1*, Y. Chihab1, M. Garoum1, L-V. Bénet2, F. Lacroux3

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.4, pp. 354-365, 2015, DOI:10.3970/fdmp.2015.011.354

    Abstract This study is based on the modeling of the air flow in the hall building including heating and air-conditioning systems. The building contains two converter stations “valves” considered as heat sources. Heat transfer in the hall is numerically simulated using the standard k-ε model of turbulence. For a very hot weather, this study aims to evaluate the local temperatures in the ambient air of the hall, with assuming running valves and air conditioning device in open loop with a 35°C inlet temperature. The study has shown that the air conditioning is efficient enough to maintain low level of temperature disparity.… More >

Displaying 1-10 on page 1 of 7. Per Page