Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,653)
  • Open Access

    ARTICLE

    Integration of Large Language Models (LLMs) and Static Analysis for Improving the Efficacy of Security Vulnerability Detection in Source Code

    José Armando Santas Ciavatta, Juan Ramón Bermejo Higuera*, Javier Bermejo Higuera, Juan Antonio Sicilia Montalvo, Tomás Sureda Riera, Jesús Pérez Melero

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074566 - 12 January 2026

    Abstract As artificial Intelligence (AI) continues to expand exponentially, particularly with the emergence of generative pre-trained transformers (GPT) based on a transformer’s architecture, which has revolutionized data processing and enabled significant improvements in various applications. This document seeks to investigate the security vulnerabilities detection in the source code using a range of large language models (LLM). Our primary objective is to evaluate the effectiveness of Static Application Security Testing (SAST) by applying various techniques such as prompt persona, structure outputs and zero-shot. To the selection of the LLMs (CodeLlama 7B, DeepSeek coder 7B, Gemini 1.5 Flash,… More >

  • Open Access

    ARTICLE

    FedDPL: Federated Dynamic Prototype Learning for Privacy-Preserving Malware Analysis across Heterogeneous Clients

    Danping Niu1, Yuan Ping1,*, Chun Guo2, Xiaojun Wang3, Bin Hao4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073630 - 12 January 2026

    Abstract With the increasing complexity of malware attack techniques, traditional detection methods face significant challenges, such as privacy preservation, data heterogeneity, and lacking category information. To address these issues, we propose Federated Dynamic Prototype Learning (FedDPL) for malware classification by integrating Federated Learning with a specifically designed K-means. Under the Federated Learning framework, model training occurs locally without data sharing, effectively protecting user data privacy and preventing the leakage of sensitive information. Furthermore, to tackle the challenges of data heterogeneity and the lack of category information, FedDPL introduces a dynamic prototype learning mechanism, which adaptively adjusts the More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026

    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More > Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open Access

    ARTICLE

    Modeling Pruning as a Phase Transition: A Thermodynamic Analysis of Neural Activations

    Rayeesa Mehmood*, Sergei Koltcov, Anton Surkov, Vera Ignatenko

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072735 - 12 January 2026

    Abstract Activation pruning reduces neural network complexity by eliminating low-importance neuron activations, yet identifying the critical pruning threshold—beyond which accuracy rapidly deteriorates—remains computationally expensive and typically requires exhaustive search. We introduce a thermodynamics-inspired framework that treats activation distributions as energy-filtered physical systems and employs the free energy of activations as a principled evaluation metric. Phase-transition–like phenomena in the free-energy profile—such as extrema, inflection points, and curvature changes—yield reliable estimates of the critical pruning threshold, providing a theoretically grounded means of predicting sharp accuracy degradation. To further enhance efficiency, we propose a renormalized free energy technique that More >

  • Open Access

    ARTICLE

    An Improved PID Controller Based on Artificial Neural Networks for Cathodic Protection of Steel in Chlorinated Media

    José Arturo Ramírez-Fernández1, Henevith G. Méndez-Figueroa1, Sebastián Ossandón2,*, Ricardo Galván-Martínez3, Miguel Ángel Hernández-Pérez3, Ricardo Orozco-Cruz3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072707 - 12 January 2026

    Abstract In this study, artificial neural networks (ANNs) were implemented to determine design parameters for an impressed current cathodic protection (ICCP) prototype. An ASTM A36 steel plate was tested in 3.5% NaCl solution, seawater, and NS4 using electrochemical impedance spectroscopy (EIS) to monitor the evolution of the substrate surface, which affects the current required to reach the protection potential (Eprot). Experimental data were collected as training datasets and analyzed using statistical methods, including box plots and correlation matrices. Subsequently, ANNs were applied to predict the current demand at different exposure times, enabling the estimation of electrochemical More >

  • Open Access

    ARTICLE

    Traffic Vision: UAV-Based Vehicle Detection and Traffic Pattern Analysis via Deep Learning Classifier

    Mohammed Alnusayri1, Ghulam Mujtaba2, Nouf Abdullah Almujally3, Shuoa S. Aitarbi4, Asaad Algarni5, Ahmad Jalal2,6, Jeongmin Park7,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071804 - 12 January 2026

    Abstract This paper presents a unified Unmanned Aerial Vehicle-based (UAV-based) traffic monitoring framework that integrates vehicle detection, tracking, counting, motion prediction, and classification in a modular and co-optimized pipeline. Unlike prior works that address these tasks in isolation, our approach combines You Only Look Once (YOLO) v10 detection, ByteTrack tracking, optical-flow density estimation, Long Short-Term Memory-based (LSTM-based) trajectory forecasting, and hybrid Speeded-Up Robust Feature (SURF) + Gray-Level Co-occurrence Matrix (GLCM) feature engineering with VGG16 classification. Upon the validation across datasets (UAVDT and UAVID) our framework achieved a detection accuracy of 94.2%, and 92.3% detection accuracy when More >

  • Open Access

    ARTICLE

    Integrating Attention Mechanism with Code Structural Affinity and Execution Context Correlation for Automated Bug Repair

    Jinfeng Ji1, Geunseok Yang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071733 - 12 January 2026

    Abstract Automated Program Repair (APR) techniques have shown significant potential in mitigating the cost and complexity associated with debugging by automatically generating corrective patches for software defects. Despite considerable progress in APR methodologies, existing approaches frequently lack contextual awareness of runtime behaviors and structural intricacies inherent in buggy source code. In this paper, we propose a novel APR approach that integrates attention mechanisms within an autoencoder-based framework, explicitly utilizing structural code affinity and execution context correlation derived from stack trace analysis. Our approach begins with an innovative preprocessing pipeline, where code segments and stack traces are… More >

  • Open Access

    ARTICLE

    TopoMSG: A Topology-Aware Multi-Scale Graph Network for Social Bot Detection

    Junhui Xu1, Qi Wang1,*, Chichen Lin2, Weijian Fan3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071661 - 12 January 2026

    Abstract Social bots are automated programs designed to spread rumors and misinformation, posing significant threats to online security. Existing research shows that the structure of a social network significantly affects the behavioral patterns of social bots: a higher number of connected components weakens their collaborative capabilities, thereby reducing their proportion within the overall network. However, current social bot detection methods still make limited use of topological features. Furthermore, both graph neural network (GNN)-based methods that rely on local features and those that leverage global features suffer from their own limitations, and existing studies lack an effective… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Earthquake Analysis via Data Warehousing for Big Data-Driven Decision Systems

    Georgia Garani1,*, George Pramantiotis2, Francisco Javier Moreno Arboleda3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071509 - 12 January 2026

    Abstract Earthquakes are highly destructive spatio-temporal phenomena whose analysis is essential for disaster preparedness and risk mitigation. Modern seismological research produces vast volumes of heterogeneous data from seismic networks, satellite observations, and geospatial repositories, creating the need for scalable infrastructures capable of integrating and analyzing such data to support intelligent decision-making. Data warehousing technologies provide a robust foundation for this purpose; however, existing earthquake-oriented data warehouses remain limited, often relying on simplified schemas, domain-specific analytics, or cataloguing efforts. This paper presents the design and implementation of a spatio-temporal data warehouse for seismic activity. The framework integrates… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Real-Time Cheating Behaviour Detection in Online Exams Using Video Captured Analysis

    Dao Phuc Minh Huy1, Gia Nhu Nguyen1, Dac-Nhuong Le2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070948 - 12 January 2026

    Abstract Online examinations have become a dominant assessment mode, increasing concerns over academic integrity. To address the critical challenge of detecting cheating behaviours, this study proposes a hybrid deep learning approach that combines visual detection and temporal behaviour classification. The methodology utilises object detection models—You Only Look Once (YOLOv12), Faster Region-based Convolutional Neural Network (RCNN), and Single Shot Detector (SSD) MobileNet—integrated with classification models such as Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Unit (Bi-GRU), and CNN-LSTM (Long Short-Term Memory). Two distinct datasets were used: the Online Exam Proctoring (EOP) dataset from Michigan State University and… More >

Displaying 1-10 on page 1 of 3653. Per Page