Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Analytical Method for Simulation of Buckling and Post-buckling Behaviour of Curved Pates

    Joo Shin Park1, Jung Kwan Seo2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.4, pp. 291-308, 2015, DOI:10.3970/cmes.2015.106.291

    Abstract Ships, ship-shaped offshore structures, land-based structures and aerospace structures typically consist of various curved plate components. It is difficult to simulate the buckling and post-buckling of curved thin and/or thick plates that have characteristics of nonlinear structural mechanics, such as nonlinear behaviour when loading is applied. The elastic post-buckling behaviour of a curved plate is very complex, and accompanied by mode changes due to the occurrence of secondary buckling behaviour. Therefore, it is very important to clarify the elastic post-buckling behaviour when subjected to axial loading. The aim of this study was to derive an analytical calculation based on the… More >

  • Open Access

    ARTICLE

    A Semi-analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Considering the Physical Neutral Axis Position

    Farzad Ebrahimi1,2, Erfan Salari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.2, pp. 151-181, 2015, DOI:10.3970/cmes.2015.105.151

    Abstract In this paper, a semi-analytical method is presented for free vibration and buckling analysis of functionally graded (FG) size-dependent nanobeams based on the physical neutral axis position. It is the first time that a semi-analytical differential transform method (DTM) solution is developed for the FG nanobeams vibration and buckling analysis. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form. The physical neutral axis position for mentioned FG nanobeams is determined. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are… More >

  • Open Access

    ARTICLE

    Computation of the Time-Dependent Green's Function for the Longitudinal Vibration of Multi-Step Rod

    V.G.Yakhno1, D. Ozdek2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 157-176, 2012, DOI:10.3970/cmes.2012.085.157

    Abstract The present paper describes computation of the time-dependent Green's function for the equations of longitudinal vibration of a multi-step rod with a piecewise constant varying cross-section. This computation is based on generalization of the Fourier series expansion method. The time-dependent Green's function is derived in the form of the Fourier series. The basic functions of this series are eigenfunctions of an ordinary differential equation with boundary and matching conditions. Constructing the eigenvalues and eigenfunctions of this differential equation and then derivation of the Fourier coefficients of the Green's function are main steps of the method. Computational experiments confirm the robustness… More >

  • Open Access

    ARTICLE

    Computation of the time-dependent Green's function of three dimensional elastodynamics in 3D quasicrystals

    V.G. Yakhno1, H.Çerdik Yaslan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.3&4, pp. 295-310, 2011, DOI:10.3970/cmes.2011.081.295

    Abstract The time-dependent differential equations of elasticity for 3D quasicrystals are considered in the paper. These equations are written in the form of a vector partial differential equation of the second order with symmetric matrix coefficients. The Green's function is defined for this vector partial differential equation. A new method of the numerical computation of values of the Green's function is proposed. This method is based on the Fourier transformation and some matrix computations. Computational experiments confirm the robustness of our method for the computation of the time-dependent Green's function in icosahedral quasicrystals. More >

  • Open Access

    ARTICLE

    Application of Symmetric Hyperbolic Systems for the Time-Dependent Maxwell's Equations in Bi-Anisotropic Media

    V.G.Yakhno1, T.M. Yakhno2

    CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.3&4, pp. 233-250, 2011, DOI:10.3970/cmes.2011.080.233

    Abstract The time-dependent Maxwell's equations in non-dispersive homogeneous bi-anisotropic materials are considered in the paper. These equations are written as a symmetric hyperbolic system. A new method of the computation of the electric and magnetic fields arising from electric current is suggested in the paper. This method consists of the following. The Maxwell's equations are written in terms of the Fourier transform with respect to the space variables. The Fourier image of the obtained system is a system of ordinary differential equations whose coefficients depend on the 3D Fourier parameter. The formula for the solution of the obtained system is derived… More >

  • Open Access

    ARTICLE

    Analytical Solution for Single and Multiple impacts with Strain-rate Effects for Shot Peening

    Baskaran Bhuvaraghan1, Sivakumar M Srinivasan2, Bob Maffeo3, Om Prakash4

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.2, pp. 137-158, 2010, DOI:10.3970/cmes.2010.057.137

    Abstract Shot peening is a complex and random process which is controlled by many input parameters. Numerical methods, which are normally used for impact problems will prohibitively put strain on the computing resources since a large number of impacts are involved in the computations. In this paper, a simplified analytical approach is used to predict the residual compressive stress that includes strain-rate effects. This is based on the method proposed by with a simple modification to include the strain rate effects. The residual stresses are predicted in materials SAE1070 and Inco718. In the computations, the random variation of the input parameters… More >

  • Open Access

    ARTICLE

    Buckling and Free Vibrations of Sandwich General shells of Revolution with Composite facings and Viscoelastic core under Thermal Environment using Semi-analytical Method

    Sharnappa1, N. Ganesan2, Raju Sethuraman3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.2, pp. 121-144, 2007, DOI:10.3970/cmes.2007.018.121

    Abstract This article presents the study on buckling and free vibration behavior of sandwich general shells of revolution under thermal environment using Wilkins theory. The temperature assumes to be uniform over the shell structure. The numerical analysis is based on the semi-analytical finite element method applicable to thick shells. The analysis is carried out for different geometry such as truncated conical and hemispherical shells with various facing and core materials under clamped-clamped boundary condition. The parametric study is carried out for different core to facing (tc / tf) thickness ratio by considering the temperature dependent and independent material properties of the… More >

  • Open Access

    ARTICLE

    A Quasi-Boundary Semi-Analytical Method for Backward in Time Advection-Dispersion Equation

    Chein-Shan Liu1, Chih-Wen Chang2, Jiang-Ren Chang2,3

    CMC-Computers, Materials & Continua, Vol.9, No.2, pp. 111-136, 2009, DOI:10.3970/cmc.2009.009.111

    Abstract In this paper, we take the advantage of an analytical method to solve the advection-dispersion equation (ADE) for identifying the contamination problems. First, the Fourier series expansion technique is employed to calculate the concentration field C(x, t) at any time t< T. Then, we consider a direct regularization by adding an extra term αC(x,0) on the final condition to carry off a second kind Fredholm integral equation. The termwise separable property of the kernel function permits us to transform itinto a two-point boundary value problem. The uniform convergence and error estimate of the regularized solution Cα(x,t) are provided and a… More >

  • Open Access

    ARTICLE

    An Analytical Method for Computing the One-Dimensional Backward Wave Problem

    Chein-ShanLiu1

    CMC-Computers, Materials & Continua, Vol.13, No.3, pp. 219-234, 2009, DOI:10.3970/cmc.2009.013.219

    Abstract The present paper reveals a new computational method for the illposed backward wave problem. The Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown initial data of velocity. Then, we consider a direct regularization to obtain a second-kind Fredholm integral equation. The termwise separable property of kernel function allows us to obtain an analytical solution of regularization type. The sufficient condition of the data for the existence and uniqueness of solution is derived. The error estimate of the regularization solution is provided. Some numerical results illustrate the performance of the new method. More >

  • Open Access

    ARTICLE

    Computing the Electric and Magnetic Green’s Functions in General Electrically Gyrotropic Media

    V. G. Yakhno1, B. Çiçek2

    CMC-Computers, Materials & Continua, Vol.44, No.3, pp. 141-166, 2014, DOI:10.3970/cmc.2014.044.141

    Abstract A method for an approximate computation of the electric and magnetic Green’s functions for the time-harmonic Maxwell’s equations in the general electrically gyrotropic materials is proposed. This method is based on the Fourier transform meta-approach: the equations for electric and magnetic fields are written in terms of images of the Fourier transform with respect to space variables and as a result of it the linear algebraic systems for finding Fourier images of the columns of the Green’s functions are obtained. The explicit formulas for the solutions of the obtained systems have been found. Finally, elements of the Green’s functions are… More >

Displaying 11-20 on page 2 of 21. Per Page