Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (117)
  • Open Access

    ARTICLE

    Effective Surface Susceptibility Models for Periodic Metafilms Within the Dipole Approximation Technique

    A.I. Dimitriadis1, N.V. Kantartzis1 and T.D. Tsiboukis1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 231-265, 2014, DOI:10.3970/cmc.2014.039.231

    Abstract The most important surface susceptibility models for the electromagnetic characterization of periodic metafilms, based on the dipole approximation method, are systematically analyzed in this paper. Specifically, two well-known techniques, which lead to a set of local effective surface parameters, are investigated along with a new dynamic non-local modeling algorithm. The latter formulation is properly expanded, in order to be applicable for any arbitrary periodic metafilm, irrespective of its way of excitation. The featured schemes are then directly compared toward their ability to efficiently predict the reflection and transmission properties of several lossless and lossy metafilms. More >

  • Open Access

    ARTICLE

    A Novel Approach to Identify the Thermal Conductivities of a Thin Anisotropic Medium by the Boundary Element Method

    Y.C. Shiah1, Y.M. Lee2, T.C. Huang2

    CMC-Computers, Materials & Continua, Vol.39, No.1, pp. 49-71, 2014, DOI:10.3970/cmc.2014.039.049

    Abstract A common difficulty arises in characterizing the anisotropic properties of a thin sheet of anisotropic material, especially in the transverse direction. This difficulty is even more phenomenal for measuring its mechanical properties on account of its thickness. As the prelude of such investigation, this paper proposes a novel approach to identify the thermal conductivities of an unknown thin layer of anisotropic material. For this purpose, the unknown layer is sandwiched in isotropic materials with known conductivities. Prescribing proper boundary conditions, one may easily measure temperature data on a few sample boundary points. Therefore, the anisotropic More >

  • Open Access

    ARTICLE

    BEM Analysis of 3D Heat Conductionin 3D Thin Anisotropic Media

    Y.C. Shiah1, Y.M. Lee2, Chi-Chang Wang2

    CMC-Computers, Materials & Continua, Vol.33, No.3, pp. 229-255, 2013, DOI:10.3970/cmc.2013.033.229

    Abstract In this paper, the boundary integrals for treating 3D field problems are fully regularized for planar elements by the technique of integration by parts (IBP). As has been well documented in open literatures, these integrals appear to be strongly singular and hyper-singular for the associated fundamental solutions. In the past, the IBP approach has only been applied to regularize the integrals for 2D problems. The present work shows that the IBP can also be further extended to treat 3D problems, where two variables of the local coordinates are involved. The presented formulations are fully explicit More >

  • Open Access

    ARTICLE

    Efficient BEM Stress Analysis of 3D Generally Anisotropic Elastic Solids With Stress Concentrations and Cracks

    Y.C. Shiah1, C.L. Tan2, Y.H. Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.4, pp. 243-257, 2013, DOI:10.3970/cmes.2013.096.243

    Abstract The present authors have recently proposed an efficient, alternative approach to numerically evaluate the fundamental solution and its derivatives for 3D general anisotropic elasticity. It is based on a double Fourier series representation of the exact, explicit form of the Green’s function derived by Ting and Lee (1997). This paper reports on the successful implementation of the fundamental solution and its derivatives based on this Fourier series scheme in the boundary element method (BEM) for 3D general anisotropic elastostatics. Some numerical examples of stress concentration problems and a crack problem are presented to demonstrate the More >

  • Open Access

    ARTICLE

    Numerical Study of Polymer Composites in Contact

    L. Rodríguez-Tembleque1, A. Sáez1, F.C. Buroni1

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.2, pp. 131-158, 2013, DOI:10.3970/cmes.2013.096.131

    Abstract A boundary element based formulation is applied to study numerically the tribological behavior of fiber-reinforced plastics (FRP) under different frictional contact conditions, taking into account the micromechanics of FRP. Micromechanical models presented consider continuous and short fiber reinforced plastics configurations. The Boundary Element Method (BEM) with an explicit approach for fundamental solutions evaluation is considered for computing the elastic influence coefficients. Signorini’s contact conditions and an orthotropic law of friction on the potential contact zone are enforced by contact operators over the augmented Lagrangian. The proposed methodology is applied to study carbon FRP under frictional More >

  • Open Access

    ARTICLE

    Numerical Evalution of Eshelby’s Tensor of Anisotropic Ferromagnetic Shape Memory Alloy and Its Influence on Magnetic Field-induced Strain

    Yuping Zhu1,2, Tao Shi1, Yuanbing Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 501-517, 2013, DOI:10.3970/cmes.2013.095.501

    Abstract Single crystal ferromagnetic shape memory alloy is a kind of new intelligent materials, it shows obvious anisotropy. Micromechanics theory has been used to analyze the whole mechanical behaviors of this material. However, Eshelby’s tensor of this material which plays an important role has still not solved efficiently. Based on the existing micromechanics constitutive model, this paper analyzes the numerical calculation formula of Eshelby’s tensor of anisotropic ferromagnetic shape memory alloy. Adopting the way of Gauss integral, the optimal Gaussian integral points for different inclusion shapes and the corresponding numerical solution of Eshelby’s tensor are obtained.Furthermore, More >

  • Open Access

    ARTICLE

    Application of the MLPG Mixed Collocation Method for Solving Inverse Problems of Linear Isotropic/Anisotropic Elasticity with Simply/Multiply-Connected Domains

    Tao Zhang1,2, Leiting Dong2,3, Abdullah Alotaibi4, Satya N. Atluri2,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.1, pp. 1-28, 2013, DOI:10.3970/cmes.2013.094.001

    Abstract In this paper, a novel Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method is developed for solving the inverse Cauchy problem of linear elasticity, wherein both the tractions as well as displacements are prescribed/measured at a small portion of the boundary of an elastic body. The elastic body may be isotropic/anisotropic and simply connected or multiply-connected. In the MLPG mixed collocation method, the same meshless basis function is used to interpolate both the displacement as well as the stress fields. The nodal stresses are expressed in terms of nodal displacements by enforcing the constitutive relation between… More >

  • Open Access

    ARTICLE

    Process-dependent Thermal-Mechanical Behaviors of an Advanced Thin-Flip-Chip-on-Flex Interconnect Technology with Anisotropic Conductive Film Joints

    Hsien-Chie Cheng1,2, Chien-Hao Ma1, Ching-Feng Yu3, Su-Tsai Lu4, Wen-Hwa Chen2,3

    CMC-Computers, Materials & Continua, Vol.38, No.3, pp. 129-154, 2013, DOI:10.3970/cmc.2013.038.129

    Abstract User experiences for electronic devices with high portability and flexibility, good intuitive human interfaces and low cost have driven the development of semiconductor technology toward flexible electronics and display. In this study proposes, an advanced flexible interconnect technology is proposed for flexible electronics, in which an ultra-thin IC chip having a great number of micro-bumps is bonded onto a very thin flex substrate using an epoxy-based anisotropic conductive film (ACF) to form fine-pitch and reliable interconnects or joints (herein termed ACF-typed thin-flip-chip-on-flex (TFCOF) technology). The electrical and thermal -mechanical performances of the micro-joints are the… More >

  • Open Access

    ARTICLE

    Correspondence Relations for Fracture Parameters of Interface Corners in Anisotropic Viscoelastic Materials

    Chyanbin Hwu1, Tai-Liang Kuo2

    CMC-Computers, Materials & Continua, Vol.36, No.2, pp. 135-153, 2013, DOI:10.3970/cmc.2013.036.135

    Abstract The problems of the interface corners between two dissimilar anisotropic viscoelastic materials are studied in this paper. Through the use of the well-known correspondence principle between linear elasticity and linear viscoelasticity, fracture parameters in the Laplace domain can be obtained from the path-independent H-integral for the corresponding problems of anisotropic linear elastic materials. Further application of the correspondence relations for fracture parameters proposed in our recent study then leads us the solutions of fracture parameters in the time domain. To show the applicability and accuracy of the proposed method, several different kinds of numerical examples More >

  • Open Access

    ARTICLE

    A Damage-Mode Based Three Dimensional Constitutive Model for Fibre-Reinforced Composites

    M. Chatiri1, A. Matzenmiller2

    CMC-Computers, Materials & Continua, Vol.35, No.3, pp. 255-283, 2013, DOI:10.3970/cmc.2013.035.255

    Abstract This article presents a three dimensional constitutive model for anisotropic damage to describe the elastic-brittle behavior of unidirectional fibrereinforced laminated composites. The primary objective of the article focuses on the three dimensional relationship between damage of the material and the effective elastic properties for the purpose of stress analysis of composite structures, in extension to the two dimensional model in Matzenmiller, Lubliner and Taylor (1995). A homogenized continuum is adopted for the constitutive theory of anisotropic damage and elasticity. Damage initiation criteria are based on Puck failure criterion for first ply failure and progressive micro More >

Displaying 41-50 on page 5 of 117. Per Page