Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (928)
  • Open Access

    ARTICLE

    Select Applications of Carbon Nanotubes: Field-Emission Devices and Electromechanical Sensors

    Amitesh Maiti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 589-600, 2002, DOI:10.3970/cmes.2002.003.589

    Abstract Atomistic modeling and simulations are becoming increasingly important in the design of new devices at the nanoscale. In particular, theoretical modeling of carbon nanotubes have provided useful insight and guidance to many experimental efforts. To this end, we report simulation results on the electronic, structural and transport properties for two different applications of carbon nanotube-based devices: (1) effect of adsorbates on field emission; and (2) effect of mechanical deformation on the electronic transport. The reported simulations are based on First Principles Density Functional Theory (DFT), classical molecular mechanics, and tight-binding transport based on the recursive Green's function formalism. More >

  • Open Access

    ARTICLE

    Multiscale Modeling of Laser Ablation: Applications to Nanotechnology

    Leonid V. Zhigilei1, Avinash M. Dongare1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 539-556, 2002, DOI:10.3970/cmes.2002.003.539

    Abstract Computational modeling has a potential of making an important contribution to the advancement of laser-driven methods in nanotechnology. In this paper we discuss two computational schemes developed for simulation of laser coupling to organic materials and metals and present a multiscale model for laser ablation and cluster deposition of nanostructured materials. In the multiscale model the initial stage of laser ablation is reproduced by the classical molecular dynamics (MD) method. For organic materials, the breathing sphere model is used to simulate the primary laser excitations and the vibrational relaxation of excited molecules. For metals, the two temperature model coupled to… More >

  • Open Access

    ARTICLE

    Application of Residual Correction Method on non-Fourier Heat Transfer for Sphere with Time-Dependent Boundary Condition

    Po-Jen Su1, Cha’o-Kung Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.2, pp. 135-151, 2013, DOI:10.3970/cmes.2013.091.135

    Abstract The residual correction method is used to predict the temperature distribution of non-Fourier heat transfer with time-dependent boundary condition. The approximate solution of temperature field is obtained by the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions, and even can provide clear definitions of the maximum error bounds of the approximate solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. More >

  • Open Access

    ARTICLE

    An Application of Genetic Algorithms and the Method of Fundamental Solutions to Simulate Cathodic Protection Systems

    W.J. Santos1 , J.A.F. Santiago1, J.C.F Telles1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.1, pp. 23-40, 2012, DOI:10.3970/cmes.2012.087.023

    Abstract The aim of this paper is to present numerical simulations of Cathodic Protection (CP) Systems using a Genetic Algorithm (GA) and the Method of Fundamental Solutions (MFS). MFS is used to obtain the solution of the associated homogeneous equation with the non-homogeneous equation subject to nonlinear boundary conditions defined as polarization curves. The adopted GA minimizes a nonlinear error function, whose design variables are the coefficients of the linear superposition of fundamental solutions and the positions of the source points, located outside the problem domain. In this work, the anodes added to the CP system are considered as point sources… More >

  • Open Access

    ARTICLE

    On the Modeling of Surface Tension and its Applications by the Generalized Interpolation Material Point Method

    L. Chen1 J. H. Lee1, C.-f. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.3, pp. 199-224, 2012, DOI:10.3970/cmes.2012.086.199

    Abstract This paper presents a numerical procedure to model surface tension using the Generalized Interpolation Material Point (GIMP) method which employs a background mesh in solving the equations of motion. The force due to surface tension is formulated at the mesh grid points by using the continuum surface force (CSF) model and then added to the equations of motion at each grid point. In GIMP, we use the grid mass as the color function in CSF and apply a moving average smoothing scheme to the grid mass to improve the accuracy in calculating the surface interface. The algorithm, named as GIMP-CSF,… More >

  • Open Access

    ARTICLE

    Modeling of Random Bimodal Structures of Composites (Application to Solid Propellants): II. Estimation of Effective Elastic Moduli

    V.A. Buryachenko1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 417-446, 2012, DOI:10.3970/cmes.2012.085.417

    Abstract We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of multimodal spherical inclusions modeling the morphology of heterogeneous solid propellants (HSP). Estimates of effective elastic moduli are performed using the multiparticle effective field method (MEFM) directly taking into account the interaction of different inclusions. Because of this, the effective elastic moduli of the HSP evaluated by the MEFM are sensitive to both the relative size of the inclusions (i.e., their multimodal nature) and the radial distribution functions (RDFs) estimated from experimental data, as well as from the ensembles generated by the… More >

  • Open Access

    ARTICLE

    Modeling of Random Bimodal Structures of Composites (Application to Solid Propellants): I. Simulation of Random Packs

    V.A. Buryachenko1,2, T.L. Jackson2,3, G. Amadio3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 379-416, 2012, DOI:10.3970/cmes.2012.085.379

    Abstract We consider a composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of multimodal spherical inclusions. This model is used to represent the morphology of heterogeneous solid propellants (HSP) that are widely used in the rocket industry. The Lubachevsky-Stillinger algorithm is used to generate morphological models of HSP with large polydisperse packs of spherical inclusions. We modify the algorithm by proposing a random shaking procedure that leads to the stabilization of a statistical distribution of the simulated structure that is homogeneous, highly mixed, and protocol independent (in sense that the statistical parameters estimated do not depend… More >

  • Open Access

    ARTICLE

    Application of Homotopy Analysis Method for Periodic Heat Transfer in Convective Straight Fins with Temperature-Dependent Thermal Conductivity

    Wei-Chung Tien1, Yue-Tzu Yang1, Cha’o-Kuang Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.2, pp. 155-170, 2012, DOI:10.3970/cmes.2012.084.155

    Abstract In this paper, the homotopy analysis method is applied to analyze the heat transfer of the oscillating base temperature processes occurring in a convective rectangular fin with variable thermal conductivity. This method is a powerful and easy-to-use tool for non-linear problems and it provides us with a simple way to adjust and control the convergence region of solution series. Without the need of iteration, the obtained solution is in the form of an infinite power series and the results indicated that the series has high accuracy by comparing it with those generated by the complex combination method. More >

  • Open Access

    ARTICLE

    Gauss Process Based Approach for Application on Landslide Displacement Analysis and Prediction

    Zaobao Liu1,2, Weiya Xu1, Jianfu Shao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.2, pp. 99-122, 2012, DOI:10.3970/cmes.2012.084.099

    Abstract In this paper, the Gauss process is proposed for application on landslide displacement analysis and prediction with dynamic crossing validation. The prediction problem using noisy observations is first introduced. Then the Gauss process method is proposed for modeling non-stationary series of landslide displacements based on its ability to model noisy data. The monitoring displacement series of the New Wolong Temple Landslide is comparatively studied with other methods as an instance to implement the strategy of the Gauss process for predicting landslide displacement. The dynamic crossing validation method is adopted to manage the displacement series so as to give more precise… More >

  • Open Access

    ARTICLE

    On application of the Stochastic Finite Volume Method in Navier-Stokes problems

    Marcin Kamiński1, Rafał Leszek Ossowski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.3&4, pp. 311-334, 2011, DOI:10.3970/cmes.2011.081.311

    Abstract The main aim of this article is numerical solution of the fully coupled Navier-Stokes equations with Gaussian random parameters. It is provided thanks to the specially adopted Finite Volume Method, modified using the generalized stochastic perturbation technique. This Stochastic Finite Volume Method is applied to model 3D problem with uncertainty in liquid viscosity and a coefficient of the heat conduction, separately. Probabilistic moments and characteristics of up to the fourth order are determined with the use of the Response Function Method realized numerically via the polynomial inpterpolation. Although mathematical formulation of the SFVM has been proposed in addition to the… More >

Displaying 831-840 on page 84 of 928. Per Page