Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (99)
  • Open Access

    ARTICLE

    Equivalence of Ratio and Residual Approaches in the Homotopy Analysis Method and Some Applications in Nonlinear Science and Engineering

    Mustafa Turkyilmazoglu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 63-81, 2019, DOI:10.32604/cmes.2019.06858

    Abstract A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications. It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual (squared) error. A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach, especially… More >

  • Open Access

    ARTICLE

    Mathematical Programming Approaches for Interval Structural Behaviour and Stability Analysis

    Di Wu1, Wei Gao1,2, Chongmin Song1, Zhen Luo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.5, pp. 331-373, 2015, DOI:10.3970/cmes.2015.108.331

    Abstract Two novel mathematical programming approaches are proposed to separately assess non-deterministic behaviour and stability of engineering structures against disparate uncertainties. Within the proposed computational schemes, uncertainties attributed by the material properties, loading regimes, as well as environmental influences are simultaneously incorporated and modelled by the interval approach. The proposed mathematical programming approaches proficiently transform the uncertain structural analyses into deterministic mathematical programs. Two essential aspects of structural analysis, namely linear structural behaviour and bifurcation buckling, have been explicitly investigated. Diverse verifications have been implemented to justify the accuracy and computational efficiency of the proposed approaches through practically motivated numerical examples. More >

  • Open Access

    ARTICLE

    Assessment of Cell-centered and Cell-vertex Finite Volume Approaches for Computation of 2D Structural Dynamics on Arbitrary Quadrilateral Grids

    Kazem Hejranfar1, Mohammad-Hadi Azampour1

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.6, pp. 395-439, 2015, DOI:10.3970/cmes.2015.106.395

    Abstract In this study, cell-centered (CC) and cell-vertex (CV) finite volume (FV) approaches are applied and assessed for the simulation of two-dimensional structural dynamics on arbitrary quadrilateral grids. For the calculation of boundary nodes’ displacement in the CC FV approach, three methods are employed. The first method is a simple linear regression of displacement of boundary nodes from the displacement of interior cell centers. In the second method, an extrapolation technique is applied for this purpose and, in the third method; the line boundary cell technique is incorporated into the solution algorithm in an explicit manner. To study the effects of… More >

  • Open Access

    ARTICLE

    Singular Boundary Method: Three Regularization Approaches and Exterior Wave Applications

    Zhuo-Jia Fu1, Wen Chen1,2, Jeng-Tzong Chen3, Wen-Zhen Qu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.5, pp. 417-443, 2014, DOI:10.3970/cmes.2014.099.417

    Abstract This study investigates the singular boundary method (SBM) with three regularization approaches for solving 2D and 3D exterior wave problems. The singular boundary method is a recent meshless boundary collocation method, which introduces the concept of source intensity factors to eliminate the singularity of the fundamental solutions. Recently, three approaches, the inverse interpolation technique (IIT), the semi-analytical technique with boundary IIT (SAT1) and the semi-analytical technique with integral mean value (SAT2), have been proposed to determine the source intensity factors for removing the singularities of Helmholtz fundamental solutions at origin. This study compares numerical accuracy and stability of these three… More >

  • Open Access

    ARTICLE

    Boundary Knot Method: An Overview and Some Novel Approaches

    J.Y. Zhang1, F.Z. Wang2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.2, pp. 141-154, 2012, DOI:10.3970/cmes.2012.088.141

    Abstract The boundary knot method (BKM) is a kind of boundary-type meshless method, only boundary points are needed in the solution process. Since the BKM is mathematically simple and easy to implement, it is superior in dealing with Helmholtz problems with high wavenumbers and high dimensional problems. In this paper, we give an overview of the traditional BKM with collocation approach and provide three novel approaches for the BKM, as far as they are relevant for the other boundary-type techniques. The promising research directions are expected from an improved BKM aspect. More >

  • Open Access

    ARTICLE

    Frequency Domain Analysis of Fluid-Solid Interaction Problems by Means of Iteratively Coupled Meshless Approaches

    L. Godinho1, D. Soares Jr.2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.4, pp. 327-354, 2012, DOI:10.3970/cmes.2012.087.327

    Abstract In this work, a coupling strategy between the Method of Fundamental Solutions (MFS) and the Kansa's Method (KM) for the analysis of fluid-solid interaction problems in the frequency domain is proposed. In this approach, the MFS is used to model the acoustic fluid medium, while KM accounts for the elastodynamic solid medium. The coupling between the two methods is performed iteratively, with independent discretizations being used for the two methods, without requiring matching between the boundary nodes along the solid-fluid interface. Two application examples, with single and multiple solid sub-domains, are presented, illustrating the behavior of the proposed approach. More >

  • Open Access

    ARTICLE

    The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems

    Z. D. Han1, H. T. Liu1, A. M. Rajendran2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 119-128, 2006, DOI:10.3970/cmes.2006.014.119

    Abstract This paper presents the implementation of a three-dimensional dynamic code, for contact, impact, and penetration mechanics, based on the Meshless Local Petrov-Galerkin (MLPG) approach. In the current implementation, both velocities and velocity-gradients are interpolated independently, and their compatibility is enforced only at nodal points. As a result, the time consuming differentiations of the shape functions at all integration points is avoided, and therefore, the numerical process becomes more stable and efficient. The ability of the MLPG code for solving high-speed contact, impact and penetration problems with large deformations and rotations is demonstrated through several computational simulations, including the Taylor impact… More >

  • Open Access

    ARTICLE

    Genetic Approaches to Iteration-free Local Contact Search

    Atsuya Oishi1, Shinobu Yoshimura2

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.2, pp. 127-146, 2008, DOI:10.3970/cmes.2008.028.127

    Abstract This paper describes new methods based on genetic approaches for finding approximating expressions of local coordinates of a contact point in a local contact search process. A contact search process generally consists of the following two phases: a global search phase for finding the nearest node-segment pair and a local search phase for finding an exact local coordinate of the contact point within the segment. The local contact search can be regarded as the mapping from the coordinates of nodes to the local coordinates of contact points. In this paper, two methods are proposed to find mathematical expressions that approximate… More >

  • Open Access

    ARTICLE

    Finite Element Approaches to Non-classical Heat Conduction in Solids

    S. Bargmann, P. Steinmann1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.2, pp. 133-150, 2005, DOI:10.3970/cmes.2005.009.133

    Abstract The present contribution is concerned with the modeling and computation of non-classical heat conduction. In the 90s Green and Naghdi presented a new theory which is fully consistent. We suggest a solution method based on finite elements for the spatial as well as for the temporal discretization. A numerical example is compared to existing experimental results in order to illustrate the performance of the method. More >

  • Open Access

    ARTICLE

    Issues in Modeling Heterogeneous Deformations in Polycrystalline Metals using Multiscale Approaches

    Paul R. Dawson1, Donald E. Boyce2, Ronald Rogge3

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.2, pp. 123-142, 2005, DOI:10.3970/cmes.2005.010.123

    Abstract Computational mechanics provides a powerful environment for modeling the evolution of material structure during deformation processes and for associating that evolution with changes to the mechanical properties. In this paper, we illustrate a two-scale formulation that links the mechanical loading applied at the scale of a component (the continuum scale) to the responses of the material at the scale of the crystals that comprise it (the crystal scale). Employing the capabilities offered by computational mechanics, we can better understand how heterogeneity of deformation arising at both the continuum and crystal scales influences the behaviors observed experimentally. Such an understanding is… More >

Displaying 81-90 on page 9 of 99. Per Page